精英家教网 > 高中数学 > 题目详情
6、设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.
(1)若A∪B=A∩B,求实数a的值;
(2)若A∩B≠∅,且A∩C=∅,求实数a的值.
分析:(1)先根据A∪B=A∩B得到A=B,化简集合B,根据集合相等的定义建立等量关系,解之即可;
(2)先求出集合B和集合C,然后根据A∩B≠∅,A∩C=∅,则只有3∈A,代入方程x2-ax+a2-19=0求出a的值,最后分别验证a的值是否符合题意,从而求出a的值.
解答:解:(1)因为A∪B=A∩B,所以A=B,又因为B={2,3},
则a=5且a2-19=6同时成立,所以a=5.
(2)因为B={2,3},C={-4,2},且A∩B≠∅,A∩C=∅,则只有3∈A,即a2-3a-10=0,
即a=5或a=-2,由(1)可知,当a=5时,A=B={2,3},
此时A∩C≠∅,与已知矛盾,
所以a=5舍去,
故a=-2.
点评:本题主要考查了子集与交集、并集运算的转换,以及两集合相等的定义,同时考查了验证的数学方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∪B=R,A∩B=(3,4],则a+b等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∪B=R,A∩B=(3,4],则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2-a<0},B={x|x<2},若A∩B=A则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.求分别满足下列条件的a的值.
(1)A∩B=A∪B;
(2)A∩B≠φ,且A∩C=φ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-2x-8<0},B={x|x2+2x-3>0},
(1)若C={x|x2-3ax+2a2<0},试求实数a的取值范围,使C⊆A且C⊆B;
(2)若C={x|x2-3ax+2a<0},试求实数a的取值范围,使C⊆A且C⊆B.

查看答案和解析>>

同步练习册答案