精英家教网 > 高中数学 > 题目详情

(05年广东卷)(14分)

如图3所示,在四面体中,已知

是线段上一点,,点在线段上,且

(Ⅰ)证明:

(Ⅱ)求二面角的大小.

 解析: (Ⅰ)证明:在中, ∵

                ∴

                ∴△PAC是以∠PAC为直角的直角三角形,

同理可证,△PAB是以∠PAB为直角的直角三角形,

△PCB是以∠PCB为直角的直角三角形.

中,∵

                   ∴   ∴

                              又∵

                   ∴

(II)

解法一:由(I)知PB⊥CE,PA⊥平面ABC

∴AB是PB在平面ABC上的射影,故AB⊥CE

∴CE⊥平面PAB,而EF平面PAB,

∴EF⊥EC,

故∠FEB是二面角B―CE―F的平面角,

∴二面角B―CE―F的大小为

解法二:如图,以C点的原点,CB、CA为x、y轴,建立空间直角坐标系C-xyz,

为平面ABC的法向量,

为平面ABC的法向量,

∴二面角B―CE―F的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.

(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;

(2)设通过最后三关后,能被录取的人数为,求随机变量的期望

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏百校样本分析)(10分)(矩阵与变换)  给定矩阵  A= =

(1)求A的特征值及对应的特征向量;  

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年莆田四中一模理) (14分)

由函数确定数列,若函数的反函数 能确定数列,则称数列是数列的“反数列”。

(1)若函数确定数列的反数列为,求的通项公式;

(2)对(1)中,不等式对任意的正整数恒成立,求实数的范围;

(3)设,若数列的反数列为的公共项组成的数列为;求数列项和

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(05年辽宁卷)(12分)

已知函数.设数列满足,数列满足

(Ⅰ)用数学归纳法证明;(Ⅱ)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

(05年湖北卷文)(12分)

设数列的前n项和为Sn=2n2为等比数列,且

   (Ⅰ)求数列的通项公式;

   (Ⅱ)设,求数列的前n项和Tn.

查看答案和解析>>

同步练习册答案