精英家教网 > 高中数学 > 题目详情
到定点(
7
,0)和定直线x=
16
7
7
的距离之比为
7
4
的动点轨迹方程是(  )
A.
x2
9
+
y2
16
=1
B.
x2
16
+
y2
9
=1
C.
x2
8
+y2=1
D.x2+
y2
8
=1
设P(x,y)是轨迹上的任一点,
由题意,得
(x-
7
)2+y2
|x-
16
7
7
|
=
7
4

化简得
x2
16
+
y2
9
=1

故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下五个关于圆锥曲线的命题中:
①平面内到定点A(1,0)和定直线l:x=2的距离之比为
1
2
的点的轨迹方程是
x2
4
+
y2
3
=1

②点P是抛物线y2=2x上的动点,点P在y轴上的射影是M点A的坐标是A(3,6),则|PA|+|PM|的最小值是6;
③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;
④若动点M(x,y)满足
(x-1)2+(y+2)2
=|2x-y-4|
,则动点M的轨迹是双曲线;
⑤若过点C(1,1)的直线l交椭圆
x2
4
+
y2
3
=1
于不同的两点A,B,且C是AB的中点,则直线l的方程是3x+4y-7=0.
其中真命题的序号是
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

到定点(
7
,0)和定直线x=
16
7
7
的距离之比为
7
4
的动点轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源:2010年江西省南昌市新建二中高考数学一模试卷(理科)(解析版) 题型:解答题

以下五个关于圆锥曲线的命题中:
①平面内到定点A(1,0)和定直线l:x=2的距离之比为的点的轨迹方程是
②点P是抛物线y2=2x上的动点,点P在y轴上的射影是M点A的坐标是A(3,6),则|PA|+|PM|的最小值是6;
③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;
④若动点M(x,y)满足,则动点M的轨迹是双曲线;
⑤若过点C(1,1)的直线l交椭圆于不同的两点A,B,且C是AB的中点,则直线l的方程是3x+4y-7=0.
其中真命题的序号是    .(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年重点中学联考一理) 以下四个关于圆锥曲线的命题中:

①平面内到定点A(1,0)和定直线l:x=2的距离之比为的点的轨迹方程是:

②点P是抛物线y2=2x上的动点,点Py轴上的射影是M,点A的坐标是A(3,6),则

  |PA|+|PM|的最小值是6;

③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;

④若过点C(1,1)的直线l交椭圆于不同的两点AB,且CAB的中点,则直线l的方程是3x+4y-7=0:

  其中真命题的序号是           (写出所有真命题的序号)

查看答案和解析>>

同步练习册答案