精英家教网 > 高中数学 > 题目详情

若抛物线 =上总存在关于直线-1=-1)对称的相异两点,试求的取值范围.

解析:设直线垂直平分抛物线的弦AB,设A()、B(),则.

..设AB的中点M(,则.又点M在抛物线内部. ,即.解得-2< <0,  故的取值范围是(-2,0).

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点(A在M、B之间).
(1)F为抛物线C的焦点,若|AM|=
54
|AF|,求k的值;
(2)如果抛物线C上总存在点Q,使得QA⊥QB,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(2,0),P为抛物线C:y2=2px(p>0)上一动点,若|PM|的最小值为
7
2

(1)求抛物线C的方程;
(2)已知⊙M:(x-2)2+y2=r2(r>0),过原点O作⊙M的两条切线交抛物线于A,B两点,若直线AB与⊙M也相切.
(i)求r的值;
(ii)对于点Q(t2,t),抛物线C上总存在两个点R,S,使得△QRS三边与⊙M均相切,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市海曙区效实中学高一(上)期中数学试卷(1-2班)(解析版) 题型:解答题

已知点M(2,0),P为抛物线C:y2=2px(p>0)上一动点,若|PM|的最小值为
(1)求抛物线C的方程;
(2)已知⊙M:(x-2)2+y2=r2(r>0),过原点O作⊙M的两条切线交抛物线于A,B两点,若直线AB与⊙M也相切.
(i)求r的值;
(ii)对于点Q(t2,t),抛物线C上总存在两个点R,S,使得△QRS三边与⊙M均相切,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市海曙区效实中学高一(上)期中数学试卷(1-2班)(解析版) 题型:解答题

已知点M(2,0),P为抛物线C:y2=2px(p>0)上一动点,若|PM|的最小值为
(1)求抛物线C的方程;
(2)已知⊙M:(x-2)2+y2=r2(r>0),过原点O作⊙M的两条切线交抛物线于A,B两点,若直线AB与⊙M也相切.
(i)求r的值;
(ii)对于点Q(t2,t),抛物线C上总存在两个点R,S,使得△QRS三边与⊙M均相切,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009年高考数学压轴试卷集锦(8)(解析版) 题型:解答题

已知抛物线C:y2=4x的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点(A在M、B之间).
(1)F为抛物线C的焦点,若|AM|=|AF|,求k的值;
(2)如果抛物线C上总存在点Q,使得QA⊥QB,试求k的取值范围.

查看答案和解析>>

同步练习册答案