精英家教网 > 高中数学 > 题目详情

(满分12分)

已知直线过点,圆:.

(1)求截得圆弦长最长时的直线方程;

(2)若直线被圆N所截得的弦长为,求直线的方程.

解:(1)显然,当直线通过圆心N时,被截得的弦长最长.………2分

     由,得  

     故所求直线的方程为  

     即    ………4分

(2)设直线与圆N交于两点(如右图)

   作交直线于点D,显然D为AB的中点.且有

………6分

(Ⅰ)若直线的斜率不存在,则直线的方程为  

      将代入,得

            

解,得    

     因此    符合题意………8分

(Ⅱ)若直线的斜率存在,不妨设直线的方程为  即:  

      由,得 

      因此      ………10分

又因为点N到直线的距离

所以    即:

此时 直线的方程为   

 综上可知,直线的方程为 ………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)

已知复数,,且

(1)若,求的值;

(2)设,求的最小正周期和单调减区间.

查看答案和解析>>

科目:高中数学 来源:2012届湖南省澧县一中、岳阳县一中高三11月联考理科数学 题型:解答题

(本小题满分12分)
已知锐角△ABC的三内角ABC的对边分别是abc,且(b2c2a2)tanAbc.
(1)求角A的大小;
(2)求sin(A+10°)·[1-tan(A-10°)]的值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省长春外国语学校高二下学期期末考试文数 题型:解答题

(本小题满分12分)
已知椭圆C:(常数),P是曲线C上的动点,M是曲线C的右
顶点,定点A的坐标为(2,0).
(1)若M与A重合,求曲线C的焦点坐标.
(2)若,求|PA|的最大值与最小值.
(3)若|PA|最小值为|MA|,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(四)理数学卷(解析版) 题型:解答题

(本小题满分12分)已知函数

(1)若时,在其定义域内单调递增,求的取值范围;

(2)设函数的图象与函数的图象交于两点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求的横坐标,若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案