精英家教网 > 高中数学 > 题目详情

 已知椭圆E的方程为:的右焦点坐标为(1,0),点在椭圆E上。

   (I)求椭圆E的方程;

   (II)过椭圆E的顶点A作两条互相垂直的直线分别与椭圆E交于(不同于点A的)两点M,N。

        问:直线MN是否一定经过x轴上一定点?若是,求出定点坐标,不是,说明理由。

 


则得即直线的方程为

,此时过轴上一点-----------------------------------10分

时,假设直线轴上一定点 ,则有则由

解得

所以直线轴上一定点 -----------------------12分

(法二):①若直线垂直于轴,则由直线的方程为和椭圆的方程联立易解得点的横坐标为,此时直线经过轴上的一点

②当直线不垂直于轴时,设直线的方程为:

则由--------------6分

则有

------------------------8分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,长轴是短轴的2倍,且椭圆E过点(
2
2
2
)
;斜率为k(k>0)的直线l过点A(0,2),
n
为直线l的一个法向量,坐标平面上的点B满足条件|
n
AB
|=|
n
|

(1)写出椭圆E方程,并求点B到直线l的距离;
(2)若椭圆E上恰好存在3个这样的点B,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的方程为2x2+y2=2,过椭圆E的一个焦点的直线l交椭圆于A、B两点.
(1)求椭圆E的长轴和短轴的长,离心率,焦点和顶点的坐标;
(2)求△ABO(O为原点)的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆E的方程为:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点坐标为(1,0),点P(1,
3
2
)在椭圆E上.
(I)求椭圆E的方程;
(II)过椭圆E的顶点A作两条互相垂直的直线分别与椭圆E交于(不同于点A的)两点M,N.
问:直线MN是否一定经过x轴上一定点?若是,求出定点坐标,不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆E的方程为
x2
a2
+
y2
b2
=1(a>b>0)双曲线
x2
a2
-
y2
b2
=1的两条渐近线为l1和l2,过椭圆E的右焦点F作直线l,使得l⊥l2于点C,又l与l1交于点P,l与椭圆E的两个交点从上到下依次为A,B(如图).
(1)当直线l1的倾斜角为30°,双曲线的焦距为8时,求椭圆的方程;
(2)设
PA
=λ1
AF
PB
=λ2
BF
,证明:λ12为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)已知椭圆E的方程为
x2
4
+
y2
3
=1
,右焦点为F,直线l与圆x2+y2=3相切于点Q,且Q在y轴的右侧,设直线l交椭圆E于不同两点A(x1,y1),B(x2,y2).
(1)若直线l的倾斜角为
π
4
,求直线l的方程;
(2)求证:|AF|+|AQ|=|BF|+|BQ|.

查看答案和解析>>

同步练习册答案