【题目】已知f(x)=|x|(2﹣x)
(1)作出函数f(x)的大致图象,并指出其单调区间;
(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.
【答案】
(1)解:f(x)=|x|(2﹣x)= ,函数的图象如图:
函数的单调增区间(0,1),单调减区间(﹣∞,0),(1,+∞).
(2)解:函数f(x)=c恰有三个不同的解,函数在x=1时取得极大值:1,
实数c的取值范围(0,1).
【解析】(1)化简函数的表达式,然后画出函数的图象,写出单调区间即可.(2)利用函数的图象,推出实数c的取值范围.
【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=1﹣a,则( )
A.f(x1)<f(x2)
B.f(x1)>f(x2)
C.f(x1)=f(x2)
D.f(x1)<f(x2)和f(x1)=f(x2)都有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=4,an+1=3an﹣2(n∈N+)
(1)求证:数列{an﹣1}为等比数列,并求出数列{an}的通项公式;
(2)令bn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),求数列{ }的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2+(b﹣2)x+3(a≠0)
(1)若不等式f(x)>0的解集(﹣1,3).求a,b的值;
(2)若f(1)=2,a>0,b>0求 + 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,侧面ABC是一个等腰直角三角形,∠BAC=90°,底面BCD是一个等边三角形,平面ABC⊥平面BCD,E为BD的中点,则AE与平面BCD所成角的大小为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(a﹣ )(a∈R).若关于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一个元素,则实数a的取值范围为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com