精英家教网 > 高中数学 > 题目详情
13.2016年9月,第22届鲁台经贸洽谈会在潍坊鲁台会展中心举行,在会展期间某展销商销售一种商品,根据市场调查,每件商品售价x(元)与销量t(万元)之间的函数关系如图所示,又知供货价格与销量呈反比,比例系数为20.(注:每件产品利润=售价-供货价格)
(1)求售价15元时的销量及此时的供货价格;
(2)当销售价格为多少时总利润最大,并求出最大利润.

分析 (1)每件商品售价x(元)与销量t(万件)之间的函数关系为t=20-x(0≤x≤20),设价格为y,则y=$\frac{20}{t}$,即可求售价15元时的销量及此时的供货价格;
(2)总利润L=(x-$\frac{20}{t}$)t=xt-20=x(20-x)-20≤$(\frac{x+20-x}{2})^{2}$-20=80,可得结论.

解答 解:(1)每件商品售价x(元)与销量t(万件)之间的函数关系为t=20-x(0≤x≤20),
设价格为y,则y=$\frac{20}{t}$,x=15时,t=5万件,y=4万元;
(2)总利润L=(x-$\frac{20}{t}$)t=xt-20=x(20-x)-20≤$(\frac{x+20-x}{2})^{2}$-20=80,
当且仅当x=10元时总利润最大,最大利润80万元.

点评 此题考查了一次函数与二次函数的知识,考查学生利用数学知识解决实际问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.棱台的两底面面积为S1、S2,中截面(过各棱中点的面积)面积为S0,那么(  )
A.$2\sqrt{S_0}=\sqrt{S_1}+\sqrt{S_2}$B.${S_0}=\sqrt{{S_1}{S_2}}$C.2S0=S1+S2D.S02=2S1S2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边是a,b,c,已知a=$\sqrt{3}$c,cos2B=$\frac{1}{2}$,B为钝角.
(1)求B;
(2)若b=$\sqrt{7}$,求AC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过点P(1,2),并且在两坐标轴上的截距相等的直线方程是(  )
A.x+y-3=0或x-2y=0B.x+y-3=0或2x-y=0
C.x-y+1=0或x+y-3=0D.x-y+1=0或2x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示的正四棱台的上底面边长为2,下底面边长为8,高为3$\sqrt{2}$,则它的侧棱长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线x=2y2的焦点坐标是(  )
A.(1,0)B.($\frac{1}{2}$,0)C.($\frac{1}{8}$,0)D.(0,$\frac{1}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F(-c,0)和虚轴端点E的直线交双曲线的右支于点P,若E为线段FP的中点,则该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图的程序框图.输出的x的值是(  )
A.2B.14C.11D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设Sn为数列{an}的前n项和,a3=6且Sn+1=3Sn,则a1+a5等于(  )
A.12B.$\frac{164}{3}$C.55D.$\frac{170}{3}$

查看答案和解析>>

同步练习册答案