是否存在常数a,b使等式对于一切n∈N*都成立?若存在,求出a,b的值,若不存在,请说明理由。
详见解析.
【解析】
试题分析:先假设存在符合题意的常数a,b,c,再令n=1,n=2,n=3构造三个方程求出a,b,c,再用用数学归纳法证明成立,证明时先证:(1)当n=1时成立.(2)再假设n=k(k≥1)时,成立,递推到n=k+1时,成立即可.
试题解析:【解析】
若存在常数a,b使得等式成立,将n=1,n=2代入等式
有:
即有: 4分
对于n为所有正整数是否成立,再用数学归纳法证明
证明:(1)当n=1时,等式成立。 5分
(2)假设n=k时等式成立,即
7分
当n=k+1时,即
11分
也就是说n=k+1时,等式成立,
则:
∴=60?
故:MD与平面OAC所成角为30? 8分
(3)设平面OBD的法向量为=(x,y,z),则
取=(2,2,1)
则点A到平面OBD的距离为d= 12分
方法二:(1)由OA⊥底面ABCD,OA⊥BD。
∵底面ABCD是边长为1的正方形
∴BD⊥AC ∴BD⊥平面OAC 4分
(2)设AC与BD交于点E,连结EM,则∠DME是直线MD与平面OAC折成的角
∵MD=,DE=
∴直线MD与平面OAC折成的角为30? 8分
(3)作AH⊥OE于点H。
∵BD⊥平面OAC
∴BO⊥AH
线段AH的长就是点A到平面OBD的距离。
∴AH=
∴点A到平面OBD的距离为 12分
考点:1. 线面垂直的的判断定理;2.线面成角.
科目:高中数学 来源:2015届江西赣州四所重点中学高二上学期期末联考理数学试卷(解析版) 题型:填空题
双曲线的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率的取值范围为 。
查看答案和解析>>
科目:高中数学 来源:2015届江西赣州四所重点中学高二上学期期末联考理数学试卷(解析版) 题型:选择题
已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V1,直径为4的球的体积为V2,则V1:V2等于( )
A.1:2
B.2:1
C.1:1
D.1:4
查看答案和解析>>
科目:高中数学 来源:2015届江西赣州四所重点中学高二上学期期末联考文数学试卷(解析版) 题型:选择题
设定点M1(0,-3),M2(0,3),动点P满足条件|PM1|+|PM2|=a+(其中a是正常数),则点P的轨迹是( )
A.椭圆 B.线段
C.椭圆或线段 D.不存在
查看答案和解析>>
科目:高中数学 来源:2015届江西赣州六校高二上学期期末联考文科数学试卷(解析版) 题型:选择题
设函数f(x)=xex,则( )
A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点
C.x=-1为f(x)的极大值点 D.x=-1为f(x)的极小值点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com