如图,已知圆心坐标为的圆与轴及直线均相切,切点分别为、,另一圆与圆、轴及直线均相切,切点分别为、。
(1)求圆和圆的方程;
(2)过点作的平行线,求直线被圆截得的弦的长度;
(1)圆的方程为,圆的方程为
(2)
解析试题分析:(1)根据圆的圆心坐标和半径求圆的标准方程.(2)直线和圆相交,根据半径,弦长的一半,圆心距求弦长.(3)圆的弦长的常用求法:(1)几何法:求圆的半径,弦心距,弦长,则
(2)代数方法:运用根与系数的关系及弦长公式.
试题解析:解(1)由于圆与的两边相切,故到及的距离均为圆的半径,则在
的角平分线上,同理,也在的角平分线上,
即三点共线,且为的角平分线,
的坐标为,到轴的距离为1,即:圆的半径为1,
圆的方程为; 3分
设圆的半径为,由,得:,
即,,圆的方程为:; 6分
(2)由对称性可知,所求弦长等于过点的的平行线被圆截得的弦长,
此弦所在直线方程为,即,
圆心到该直线的距离,则弦长= 3分
考点:(1)圆的方程(2)直线和圆相交求弦长问题.(3)点到直线距离公式.
科目:高中数学 来源: 题型:解答题
已知圆M: ,直线,上一点A的横坐标为,过点A作圆M的两条切线,,切点分别为B,C.
(1)当时,求直线,的方程;
(2)当直线,互相垂直时,求的值;
(3)是否存在点A,使得?若存在,求出点A的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆与坐标轴交于点.
⑴求与直线垂直的圆的切线方程;
⑵设点是圆上任意一点(不在坐标轴上),直线交轴于点,直线交直线于点,
①若点坐标为,求弦的长;②求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设椭圆的左、右焦点分别为,点在椭圆上,,,的面积为.
(1)求该椭圆的标准方程;
(2)是否存在圆心在轴上的圆,使圆在轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com