精英家教网 > 高中数学 > 题目详情

【题目】已知公比为正数的等比数列,首项,前n项和为,且成等差数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前n项和

【答案】(Ⅰ)an6×(n(Ⅱ)Tn2﹣(n+2)(n

【解析】

(Ⅰ)设公比为q0,由等比数列的通项公式和等差数列中项的性质,解方程可得q,即可得到所求通项公式;(Ⅱ)求得bnnn,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

(Ⅰ)an6×(n(Ⅱ)Tn2﹣(n+2)(n

依题意公比为正数的等比数列{an}nN*),首项3

an3qn1

成等差数列,

2)=+

2)=(+),

化简得4

从而4q21,解得q=±

{an}nN*)公比为正数,

qan6×(nnN*

(Ⅱ)bnnn

Tn1+22+33++n1)(n1+nn

Tn12+23+34++n1)(n+nn+1

两式相减可得Tn2+3+4++nnn+1

nn+1

化简可得Tn2﹣(n+2)(n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂家拟在新年举行大型的促销活动,经测算某产品当促销费用为万元时,销售量万件满足(其中为正常数).现假定生产量与销售量相等,已知生产该产品万件还需投入成本万元(不含促销费用),产品的销售价格定为万元/万件.

1)将该产品的利润万元表示为促销费用万元的函数;

2)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.

1)选5人排成一排;

2)排成前后两排,前排4人,后排3人;

3)全体排成一排,甲不站排头也不站排尾;

4)全体排成一排,女生必须站在一起;

5)全体排成一排,男生互不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组共7人,利用假期参加义工活动,已知参加义工活动的次数为1,2,3的人数分别为2,2,3.现从这7人中随机选出2人作为该组代表参加座谈会:

(Ⅰ)设A为事件“选出的2人参加义工活动的次数之和为4”,求事件A发生的概率;

(Ⅱ)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)当a=1时,求函数的单调区间:

(Ⅱ)求函数的极值;

(Ⅲ)若函数有两个不同的零点,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆为坐标原点,动点在圆外,过点分别作圆的切线,切点分别为.

1)若点在点位置时,求此时切线的方程;

2)若点满足,问直线上是否存在点,使得?如果存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,的中点.

1)证明:

2)若,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)讨论的单调性;

(II)若恒成立,证明:当时,.

(III)在(II)的条件下,证明:.

查看答案和解析>>

同步练习册答案