精英家教网 > 高中数学 > 题目详情

【题目】某房地产开发公司计划在一楼区内建造一个长方形公园,公园由长方形的休闲区(阴影部分)和环公园人行道组成.已知休闲区的面积为4000平方米,人行道的宽分别为4米和10米.

(1)若设休闲区的长米,求公园所占面积关于的函数的解析式;

(2)要使公园所占面积最小,休闲区的长和宽该如何设计?

【答案】(1);(2)要使公园所占面积最小,休闲区的长为100米,宽为40米.

【解析】试题分析:本题为函数应用问题,首先要要认真细致的审题,逐字逐句的读题,建立函数模型,把实际问题转化为数学问题.注意函数的定义域,实际问题要注意实际要求,建立函数关系后,有时利用基本不等式求最值,但要注意等号成立的条件,有时利用二次函数求最值,有时还需要借助导数研究函数的单调性求最值.

试题解析:

,知

(2)

当且仅当时取等号

∴要使公园所占面积最小,休闲区的长为100米,宽为40米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 ,数列满足在直线上.

(1)求数列 的通项

(2)令,求数列的前项和

(3)若,求对所有的正整数都有成立的的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中 为非零常数.

(1)若 ,求证: 为等比数列,并求数列的通项公式;

(2)若数列是公差不等于零的等差数列.

①求实数 的值;

②数列的前项和构成数列,从中取不同的四项按从小到大排列组成四项子数列.试问:是否存在首项为的四项子数列,使得该子数列中的所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双“十一”结束之后,某网站针对购物情况进行了调查,参与调查的人主要集中在[20,50]岁之间,若规定:购物600(含600元)以下者,称为“理智购物”,购物超过600元者被网友形象的称为“剁手党”,得到如下统计表:

分组编号

年龄分组

球迷

所占比例

1

[20,25)

1000

0.5

2

[25,30)

1800

0.6

3

[30,35)

1200

0.5

4

[35,40)

a

0.4

5

[40,45)

300

0.2

6

[45,50]

200

0.1

若参与调查的“理智购物”总人数为7720人.
(1)求a的值;
(2)从年龄在[20,35)的“剁手党”中按照年龄区间分层抽样的方法抽取20人; ①从这20人中随机抽取2人,求这2人恰好属于同一年龄区间的概率;
②从这20人中随机抽取2人,用ζ表示年龄在[20,25)之间的人数,求ξ的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的角所对的边份别为,且

1求角的大小;

2,求的周长的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnx﹣ax).
(1)a= 时,求f(x)在点(1,f(1))处的切线方程;
(2)若f(x)存在两个不同的极值x1 , x2 , 求a的取值范围;
(3)在(2)的条件下,求f(x)在(0,a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是圆O的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}的前n项和为Sn, S3=a4+6,且a1, a4, a13成等比数列.

(1)求数列{an}的通项公式;

(2),求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.

上图中,已知课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取的学生作为研究样本组(以下简称“组M”).

(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?

(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.

(ⅰ)设随机变量表示选出的4名同学中选择课程的人数,求随机变量的分布列;

(ⅱ)设随机变量表示选出的4名同学参加科学营的费用总和,求随机变量的期望.

查看答案和解析>>

同步练习册答案