精英家教网 > 高中数学 > 题目详情
15.若圆x2+y2-2x+4y+1=0上至少有两个点到直线2x+y-c=0的距离等于1,则实数c的取值范围为(  )
A.$(0,3\sqrt{5})$B.$[-\sqrt{5},\sqrt{5}]$C.$(-3\sqrt{5},3\sqrt{5})$D.$(0,\sqrt{5})$

分析 把圆的方程化为标准方程后,找出圆心坐标和圆的半径,用点到直线的距离公式表示出圆心到已知直线的距离d,画出图象,根据图象和题意列出关于d的不等式,求出不等式的解集即可得到c的取值范围.

解答 解:把圆的方程化为标准方程得:(x-1)2+(y+2)2=4,
得到圆心坐标为(1,-2),半径r=2,
根据题意画出图象,如图所示:
因为圆心到直线2x+y-c=0的距离d=$\frac{|c|}{\sqrt{5}}$,
根据图象可知:当0≤d<3时,
圆上至少有两个点到直线2x+y+c=0距离等于1,
即0≤$\frac{|c|}{\sqrt{5}}$<3,
解得,$-3\sqrt{5}$<c<3$\sqrt{5}$,
则满足题意的c的取值范围是(-3$\sqrt{5}$,3$\sqrt{5}$),
故选:C.

点评 本题考查圆上的点到直线距离问题,点到直线的距离公式,解题关键是通过图象找出圆心到已知直线的距离的取值范围,考查了数形结合的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,AB为圆O的直径,点C为圆O上的一点,且BC=$\sqrt{3}$AC,点D为线段AB上一点,且AD=$\frac{1}{3}$DB.PD垂直于圆O所在的平面.
(Ⅰ)求证:CD⊥平面PAB;
(Ⅱ)若PD=BD,求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=1nx-a(x-1)2的单调递增区间是(0,$\frac{1+\sqrt{5}}{2}$)
(1)求实数a的值;
(2)证明:当x>1时,f(x)<x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C、D、E.若AC=6,DE=4,则CD的长为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.AB是⊙O的直径,点C是⊙O上的动点,过动点C的直线VC垂直于⊙O所在的平面,D,E分别是VA,VC的中点.
(1)试判断直线DE与平面VBC的位置关系,并说明理由;
(2)若已知AB=VC=2,当三棱锥V-ABC体积最大时,求点C到面VBA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义:分子为1且分母为正整数的分数叫做单位分数,我们可以把1拆分成多个不同的单位分数之和.例如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,…,依此拆分法可得1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$+$\frac{1}{182}$,其中m,n∈N*,则m-n=(  )
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是公差为2的等差数列,且a1,a4,a13成等比数列,数列{$\frac{{b}_{n}}{{a}_{n}}$}是首项为1,公比为3的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an+bn}的前n项和Rn,若不等式$\frac{{R}_{n}}{n}$≤λ•3n+n+3对n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=4,c=2$\sqrt{3}$,cosA=sin1380°,则a等于(  )
A.7B.2$\sqrt{13}$C.2$\sqrt{6}$D.2

查看答案和解析>>

同步练习册答案