精英家教网 > 高中数学 > 题目详情
10.已知全集U={x|1≤x≤6,x∈Z},集合A={1,3,4},集合B={2,4},则(∁UA)∪B=(  )
A.{1,2,4,6}B.{2,3,4,6}C.{2,4,5,6}D.{2,6}

分析 根据集合的定义进行运算即可得到结论.

解答 解:全集U={x|1≤x≤6,x∈Z}={1,2,3,4,5,6},
A={1,3,4},
∴∁UA={2,5,6},
又B={2,4},
∴(∁UA)∪B={2,4,5,6}.
故选:C.

点评 本题考查了集合的定义与基本运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.(理科)在平面直角坐标系中,x轴正半轴上有5个点,y轴正半轴有3个点,将x轴上这5个点和y轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有30个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$\overrightarrow a=(2\;,\;\;6)$,$\overrightarrow b\;=(1\;,\;\;-1+y)$,且$\overrightarrow a∥\overrightarrow b$,则y等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥O-ABCD中,底面ABCD是四边长为$\sqrt{2}$的菱形,$∠ABC=\frac{π}{4},OA⊥$底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(1)证明:平面OAC⊥平面OBD;
(2)求平面BMN与平面OAD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$=(λ+1,0,2λ),$\overrightarrow{b}$=(6,0,2),$\overrightarrow{a}$∥$\overrightarrow{b}$,则λ的值为(  )
A.$\frac{1}{5}$B.5C.$-\frac{1}{5}$D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用数学归纳法证明“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<f(n)$”时,由n=k不等式成立,证明n=k+1时,左边应增加的项数是(  )
A.2k-1B.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\frac{{2cos(\frac{3}{2}π+θ)+cos(π+θ)}}{{3sin(π-θ)+2sin(\frac{5}{2}π+θ)}}=\frac{1}{5}$;
(1)求tanθ的值;
(2)求sin2θ+3sinθcosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=$\frac{-g(x)+a}{2g(x)+b}$是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性(直接写出结论不用证明 )
(3)若对任意的t∈[0,1],不等式f(t2-2t)+f(2t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若向量$\overrightarrow{a}$=(1,1)与$\overrightarrow{b}$=(λ,-2)的夹角为钝角,则λ的取值范围是(-∞,-2)∪(-2,2).

查看答案和解析>>

同步练习册答案