精英家教网 > 高中数学 > 题目详情
在△ABC中,若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,则△ABC的形状是(  )
A、直角三角形B、等腰直角三角形C、等腰三角形D、等边三角形
分析:通过(a+b+c)(b+c-a)=3bc化简整理得b2-bc+c2=a2,利用余弦定理中求得cosB,进而求得B=60°,把B代入sinA=2sinB cosC中化简整理求得tanA,进而求得A,最后根据三角形内角和求得C,进而可判断三角形的形状.
解答:解:∵(a+b+c)(b+c-a)=3bc
∴[(b+c)+a][(b+c)-a]=3bc
∴(b+c)2-a2=3bc
b2+2bc+c2-a2=3bc
b2-bc+c2=a2
根据余弦定理有a2=b2+c2-2bccosA
∴b2-bc+c2=a2=b2+c2-2bccosA
bc=2bccosA
cosA=
1
2

∴A=60°
sinA=2sinBcosC
sin(B+C)=2sinBcosC
∴sin(B-C)=0
B=C,∵A=60°,∴B=C=60°
∴△ABC是等边三角形
故选D.
点评:本题主要考查了余弦定理在解三角形中的应用.要熟练记忆余弦定理的公式及其变形公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若
BC
=
a
CA
=
b
AB
=
c
a
b
=
b
c
=
c
a
,则△ABC的形状是△ABC的(  )
A、锐角三角形
B、直角三角形
C、等腰直角三角形
D、等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,若
BC
=
a
AC
=
b
AB
=
c
,且
|b|
=2
3
a
•cosA+
c
•cosC=
b
•sinB

(1)断△ABC的形状;
(2)求
a
c
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若(a+b+c)(a+b-c)=3ab,且sinC=2sinAcosB,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若(a+c)(a-c)=b(b+c),则A等于(  )

查看答案和解析>>

同步练习册答案