精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,若
BC
=
a
AC
=
b
AB
=
c
,且
|b|
=2
3
a
•cosA+
c
•cosC=
b
•sinB

(1)断△ABC的形状;
(2)求
a
c
的值.
分析:(1)由
b
=
a
+
c
代入
a
•cosA+
c
•cosC=
b
•sinB
可得
a
(cosA-sinB)=
c
(sinB-cosC)
,由向量的基本定理可得
cosA-sinB=0
sinB-cosC=0
,从而可证
(2)由三角形的内角和定理可知,A=
1
2
π-
1
2
B
,结合(1)知cosA=cos(
1
2
π-
1
2
B
)=sin
1
2
B
=sinB,从而可求B,A,C,然后由正弦定理可得,
AC
sin
3
=
BC
sin
π
6
可求BC,代入向量的数量积
a
c
=|
AB
||
BC
|cos(π-
3
)
可求
解答:解:(1)∵
AC
=
AB
+
BC
BC
=
a
AC
=
b
AB
=
c

b
=
a
+
c

a
•cosA+
c
•cosC=
b
•sinB

a
•cosA+
c
•cosC= (
a
+
c
)sinB

a
(cosA-sinB)=
c
(sinB-cosC)

a
c
是两不共线的向量
cosA-sinB=0
sinB-cosC=0

∴cosA=cosC
∵0<A,C<π
∴A=C,△ABC为等腰三角形
(2)在等腰三角形中,A+B+C=π,A=C
2A+B=π即A=
1
2
π-
1
2
B

由(1)知cosA=cos(
1
2
π-
1
2
B
)=sin
1
2
B
=sinB=2sin
1
2
B
cos
1
2
B

cos
1
2
B=
1
2

0<
1
2
B<
1
2
π

1
2
B=
π
3

B=
3

A=C=
π
6

由正弦定理可得,
AC
sin
3
=
BC
sin
π
6

∴|
BC
|=2
a
c
=|
AB
||
BC
|cos(π-
3
)
=2×
1
2
=2
点评:本题主要考查了向量的基本运算、向量基本定理的应用,三角形的诱导公式、正弦定理等知识的综合应用,解答本题的关键除了熟练掌握基本知识外,更要具备综合应用知识的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案