精英家教网 > 高中数学 > 题目详情
在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O。

(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值。
(1) (2)
(1)证明:连接AO,在中,作于点E,因为,得,
因为平面ABC,所以,因为,
,所以平面,所以,
所以平面,又,得
(2)如图所示,分别以所在的直线为x,y,z轴建立空间直角坐标系,则A(1,0,0), C(0,-2,0), A1(0.0,2),B(0,2,0)

由(1)可知得点E的坐标为,由(1)可知平面的法向量是,设平面的法向量
,得,令,得,即
所以
即平面平面与平面BB1C1C夹角的余弦值是
【点评】本题考查线面垂直,二面角、向量法在解决立体几何问题中的应用以及空间想象的能力. 高考中,立体几何解答题一般有以下三大方向的考查.一、考查与垂直,平行有关的线面关系的证明;二、考查空间几何体的体积与表面积;三、考查异面角,线面角,二面角等角度问题.前两种考查多出现在第1问,第3种考查多出现在第2问;对于角度问题,一般有直接法与空间向量法两种求解方法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,底面为正方形,分别是的中点.
(I)求证:平面
(II)求证:
(III)设PD="AD=a," 求三棱锥B-EFC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB   
(Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设地球的半径为,若甲地位于北纬东经,乙地位于南纬东经,则甲、乙两地的球面距离为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱锥中,
(1)求该正四棱锥的体积
(2)设为侧棱的中点,求异面直线
所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间三个平面如果每两个都相交,那么它们的交线有
A.1条B.2条C.3条D.1条或3条

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图正方形BCDE的边长为a,已知AB=BC,将直角△ABE沿BE边折起,A点在面BCDE上的射影为D点,则翻折后的几何体中有如下描述:
(1)ADE所成角的正切值是
(2)的体积是
(3)AB∥CD;
(4)平面EAB⊥平面ADEB;
(5)直线PA与平面ADE所成角的正弦值为
其中正确的叙述有_____(写出所有正确结论的编号)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若空间四边形ABCD的两对角线AC、BD的长分别是8和12,过AB的中点E且平行于BD、AC的截面四边形的周长是_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一平面截一球得到直径为2的圆面,球心到这平面的距离为3,则该球的体积是        

查看答案和解析>>

同步练习册答案