精英家教网 > 高中数学 > 题目详情
16、如图,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥A1B,D为AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求证:平面AB1C1⊥平面ABB1A1
分析:(Ⅰ)设AB1∩A1B=O,连接OD,利用直线OD与直线B1C平行,来推导出B1C∥平面A1BD.
(Ⅱ)由AB=BB1得ABB1A1正方形?A1B⊥AB1,再由A1B⊥AC1?A1B⊥平面AB1C1?平面AB1C1⊥平面ABB1A1
解答:解:(Ⅰ)设AB1∩A1B=O,连接OD.
由于点O是AB1的中点,又D为AC的中点,所以OD∥B1C(5分)
而B1C?平面A1BD,OD?平面A1BD,所以B1C∥平面A1BD(7分)
(Ⅱ)因为AB=BB1,所以是ABB1A1正方形,则A1B⊥AB1
又A1B⊥AC1,且AC1,AB1?平面AB1C1,AC1∩AB1=A,所以A1B⊥平面AB1C1(12分)
而A1B?平面ABB1A1,所以平面AB1C1⊥平面ABB1A1(14分)
点评:本题考查平面和平面垂直的判定和性质以及线面平行的判定.在证明线面平行时,其常用方法时转化为线线平行或面面平行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案