精英家教网 > 高中数学 > 题目详情
有n个首项都是1的等差数列,设第m个数列的第k项为amk(m,k=1,2,3,…,n,n≥3),公差为dm,并且a1n,a2n,a3n,…,ann成等差数列.若dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=
 
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,ann中的第项减第2项,第3项减第4项,…,第n项减第n-1项,由此数列也为等差数列,得到表示出的差都相等,进而得到dn是首项d1,公差为d2-d1的等差数列,根据等差数列的通项公式表示出dm的通项,令p1=2-m,p2=m-1,得证,求出p1+p2即可.
解答: 解:由题意知amn=1+(n-1)dm
则a2n-a1n=[1+(n-1)d2]-[1+(n-1)d1]=(n-1)(d2-d1),
同理,a3n-a2n=(n-1)(d3-d2),a4n-a3n=(n-1)(d4-d3),…,ann-a(n-1)n=(n-1)(dn-dn-1).
又因为a1n,a2n,a3n,ann成等差数列,所以a2n-a1n=a3n-a2n=…=ann-a(n-1)n
故d2-d1=d3-d2=…=dn-dn-1,即dn是公差为d2-d1的等差数列.
所以,dm=d1+(m-1)(d2-d1)=(2-m)d1+(m-1)d2
令p1=2-m,p2=m-1,则dm=p1d1+p2d2,此时p1+p2=1.
故答案为:1.
点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
x2
ex-1
的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x
的反函数f-1(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=
e6
36
,b=
e7
49
,c=
e8
64
,则a,b,c的大小关系为(  )
A、a>b>c
B、b>a>c
C、c>b>a
D、c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知随机变量η~N(3,22),若ξ=2η+3,则Dξ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式log2(4x-3)>x+1的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)满足f(x)=1+f(2)•log2x2,则f(4)=(  )
A、-3B、-2C、0D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合P={x||x-2|≥1},则P=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y-4)2=1,圆C2:(x+1)2+y2=1.
(1)求过点A(4,6)的圆C1的切线l的方程;
(2)已知圆C3:(x+1)2+y2=9,动圆M半径为1,圆心M在圆C3上移动,过圆M上任意一点P作圆C2的两条切线PE,PF,切点为E,F,求
C1E
C1F
的取值范围;
(3)若动圆Q同时平分圆C1的周长、圆C2的周长,求圆心Q的轨迹方程,并判断
动圆Q是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

同步练习册答案