精英家教网 > 高中数学 > 题目详情

(20分)已知函数是在上每一点处均可导的函数,若上恒成立。

(1)①求证:函数上是增函数;

②当时,证明:

(2)已知不等式时恒成立,求证:

 

【答案】

解(1)①由,由可知上恒成立,

从而有上是增函数。

②由①知上是增函数,当时,有

 ,于是有:

两式相加得:

(2)由(Ⅰ)②可知:,()恒成立

由数学归纳法可知:时,有:

 恒成立

,则,则时,

恒成立

,记

将(**)代入(*)中,可知:

于是:

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数是在上每一点均可导的函数,若 在时恒成立.

(1)求证:函数上是增函数;

(2)求证:当时,有

(3)请将(2)问推广到一般情况,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2012届山东省济宁市汶上一中高三11月月考文科数学 题型:解答题

(20分)已知函数是在上每一点处均可导的函数,若上恒成立。
(1)①求证:函数上是增函数;
②当时,证明:
(2)已知不等式时恒成立,求证:

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高三上学期数学单元测试12-文科-算法、复数、推理与证明 题型:解答题

 已知函数是在上每一点均可导的函数,若时恒成立.

(1)求证:函数上是增函数;

(2)求证:当时,有

(3)请将(2)问推广到一般情况,并证明你的结论(不要求证明).

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高三上学期数学单元测试12-理科-算法、复数、推理与证明 题型:解答题

 已知函数是在上每一点均可导的函数,若时恒成立.

(1)求证:函数上是增函数;

(2)求证:当时,有

(3)请将(2)问推广到一般情况,并证明你的结论.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案