精英家教网 > 高中数学 > 题目详情

已知,且.
(1)求
(2)求.

(1);(2).

解析试题分析:
(1) 本小题首先根据同角三角函数基本关系式,结合角的范围可求得,然后利用二倍角正切公式求
(2) 本小题主要是根据角的变换,转化为和差角求解,首先由,得,又因为,所以,最后代入化简即可.
试题解析:
(1)由


于是……6分
(2)由,得
又∵

得:

所以……13分
考点:1.同角三角函数基本关系式;2.和差角公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

ABC中,内角A,B,C的对边分别为a,b,c.
已知.
(Ⅰ)求的值;  (Ⅱ)若,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)设函数,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求证:向量与向量不可能平行;
(2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的值;
(2)设的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是的三个内角的对边,.
(Ⅰ)求角的大小;
(Ⅱ)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求角C的大小;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数.
(Ⅰ)求的最小正周期与最大值;
(Ⅱ)在中,分别是角的对边,若的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为,求f(θ)的值;
(2)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

查看答案和解析>>

同步练习册答案