精英家教网 > 高中数学 > 题目详情

三棱锥P-ABC中,PA,PB,PC两两垂直,如果此三棱锥外接球的表面积为9π,那么PA•PB+PA•PC+PB•PC的最大值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    9
  4. D.
    18
C
分析:三棱锥的三条侧棱两两垂直,扩展为长方体,二者的外接球是同一个,根据球的表面积,求出球的直径,就是长方体的对角线长,设出三度,利用基本不等式求出表达式的最值.
解答:三棱锥的三条侧棱两两垂直,扩展为长方体,二者的外接球是同一个,因为三棱锥外接球的表面积为9π,
所以球的半径为:r=,球的直径为:3
设长方体的三度为:a,b,c,所以a2+b2+c2=9
PA•PB+PA•PC+PB•PC=ab+bc+ac≤a2+b2+c2=9,当且仅当a=b=c时取等号.
故选C
点评:本题是基础题,考查球的内接体知识,基本不等式的应用,考查空间想象能力,计算能力,三棱锥扩展为长方体是本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
(1)证明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=
π2
,PA=2,AB=AC=4,点D、E、F分别为BC、AB、AC的中点.
(I)求证:EF⊥平面PAD;
(II)求点A到平面PEF的距离;
(III)求二面角E-PF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)当k=
12
时,求直线PA与平面PBC所成角的大小;
(Ⅱ)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.
(1)证明平面PBF⊥平面PAC;
(2)判断AE是否平行于平面PFD,并说明理由;
(3)若PC=AB=2,求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步练习册答案