精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=$\frac{1}{2}{x^2}$+lnx-ax+1在区间($\frac{1}{2}$,3)上单调递减,则实数a的取值范围为(  )
A.(-∞,2]B.(-∞,2)C.[3,+∞)D.$(-∞,\frac{5}{2})$

分析 求出函数的单调区间,由于函数区间$(\frac{1}{2},3)$上单调递减,故此区间是其定义上单调区间的子集,故比较区间的端点即可得到参数的取值范围,选出正确答案.

解答 解:函数$f(x)=\frac{1}{2}{x^2}+lnx-ax+1$的导数为f'(x)=x+$\frac{1}{x}$-a=$\frac{{x}^{2}-ax}{x}$,令f′(x)<0,可得x2-ax<0,解得x∈(0,a),函数$f(x)=\frac{1}{2}{x^2}+lnx-ax+1$在区间$(\frac{1}{2},3)$上单调递减,
可得a≥3,实数a的取值范围为[3,+∞).
故选:C.

点评 本题考查利用导数研究函数的单调性,求解本题的关键是利用导数求出函数的单调递减区间以及根据题设条件作出正确判断得出参数所满足的不等式,解出参数的取值范围,根据题设转化出不等式是本题的易错点,要注意等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某校举行校园达人秀初赛,共有3名评委老师参加评审,某一节目至少有2名评委老师同意通过,则该节目晋级.假如该校高二(1)班共有2名选手参加比赛,其中甲选手获得每位评委老师同意通过的概率均为$\frac{1}{2}$,乙选手获得每位评委老师同意通过的概率均为$\frac{1}{3}$,各评委老师评审的结果相互独立.
(1)分别求甲、乙两名选手晋级的概率;
(2)设高二(1)班甲、乙两选手的晋级的人数为X,试求随机变量X的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解关于x,y的方程组$\left\{\begin{array}{l}{mx+2y=m+4}\\{2x+my=m}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a,b,c中至少有一个是偶数.用反证法证明时,下列假设正确的是(  )
A.假设a,b,c都是偶数B.假设a,b,c都不是偶数
C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知各项均不为零的数列{an},定义向量$\overrightarrow{c_n}=({{a_n},{a_{n+1}}}),\overrightarrow{b_n}=({2n+2,-2n}),n∈{N^*}$.下列命题中真命题是(  )
A.若?n∈N*总有cn⊥bn成立,则数列{an}是等比数列
B.若?n∈N*总有cn∥bn成立成立,则数列{an}是等比数列
C.若?n∈N*总有cn⊥bn成立,则数列{an}是等差数列
D.若?n∈N*总有cn∥bn成立,则数列{an}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在全校学科大阅读活动中,《写给全人类的数学魔法书》40页“宝库笔记”中详细阐述了笔记的记录方法,下列选项中你认为没有必要的是(  )
A.写下对定理或公式的验证方法
B.把解题方法当中涉及到的想法和思路都记下来
C.用自己的语言来表述,不能照抄书上的
D.把所有的习题都记在这本“宝库笔记”上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.角α终边上一点P(2sin5,-2cos5),α∈(0,2π),则α=(  )
A.5-$\frac{π}{2}$B.3π-5C.5D.5+$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.我们把平面直角坐标系中,函数y=f(x),x∈D上的点P(x,y),满足x∈N*,y∈N*的点称为函数y=f(x)的“正格点”.
(Ⅰ)若函数f(x)=sinmx,x∈R,m∈(3,4)与函数g(x)=lgx的图象有正格点交点,求m的值,并写出两个函数图象的所有交点个数.
(Ⅱ)对于(Ⅰ)中的m值,函数f(x)=sinmx,$x∈({0,\frac{5}{7}}]$时,不等式logax>sinmx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a>0,函数$f(x)=asin2x-\sqrt{3}cos2x+1$的最大值为3.
(1)求f(x)的单调递减区间;
(2)若x∈[$\frac{π}{4}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

同步练习册答案