精英家教网 > 高中数学 > 题目详情

(本小题满分15分)

如图,四边形为矩形,点的坐标分别为,点上,坐标为,椭圆分别以为长、短半轴,是椭圆在矩形内部的椭圆弧.已知直线与椭圆弧相切,且与相交于点

(Ⅰ)当时,求椭圆的标准方程;

(Ⅱ)圆在矩形内部,且与和线段EA都相切,若直线将矩形分成面积相等的两部分,求圆M面积的最大值.


解:(1)解:设椭圆的方程为.   k*s5*u

消去y.  …………………3分

由于直线l与椭圆相切,

化简得,          ①    

时,

则椭圆的标准方程为.                  ………………………6分

(2)由题意知

于是的中点为.   

因为将矩形分成面积相等的两部分,所以过点

,亦即.         ② 

由①②解得,故直线的方程为     ………………9分

.

因为圆与线段相切,所以可设其方程为.

因为圆在矩形及其内部,所以      ④    

相切,且圆上方,所以,即.

代入④得  

所以圆面积最大时,,这时,圆面积的最大值为.………15分

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分15分)

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若,试分别解答以下两小题.

(ⅰ)若不等式对任意的恒成立,求实数的取值范围;

(ⅱ)若是两个不相等的正数,且,求证:

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题

(本小题满分15分).

已知分别为椭圆

上、下焦点,其中也是抛物线的焦点,

在第二象限的交点,且

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点P(1,3)和圆,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:)。求证:点Q总在某定直线上。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题

(本小题满分15分)

如图已知,椭圆的左、右焦点分别为,过的直线与椭圆相交于A、B两点。

(Ⅰ)若,且,求椭圆的离心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题

(本小题满分15分)若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题

(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:

(1)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率

 

 

查看答案和解析>>

同步练习册答案