精英家教网 > 高中数学 > 题目详情
已知菱形ABCD的边长为2,对角线AC与BD交于点O,且∠ABC=120°,M为BC的中点.将此菱形沿对角线BD折成二面角A-BD-C.
( I)求证:面AOC⊥面BCD;
( II)若二面角A-BD-C为60°时,求直线AM与面AOC所成角的余弦值.
( I)证明:因为四边形ABCD为菱形,
所以OA⊥BD,OC⊥BD,
所以
AO⊥BD
CO⊥BD
AO∩CO=O
BD⊥面AOC
BD⊆面BCD
⇒面AOC⊥面BCD…(6分)
( II)菱形沿对角线BD折成二面角A-BD-C后,仍然有AO⊥BD,CO⊥BD,
∴∠AOC是二面角A-BD-C的平面角,即∠AOC=60°…(8分)
作MK⊥OC,连接AK,如图所示:

因为MKBD,BD⊥面AOC,
所以MK⊥面AOC,
所以∠MAK是直线AM与面AOC所成的角…(10分)
因为菱形ABCD的边长为2,对角线AC与BD交于点O,且∠ABC=120°,
所以OC=AO=
3
,BD=
3

又因为MK⊥OC,M为BC的中点,
所以K为OC的中点,
所以OK=
3
2

所以在△AOK中,因为∠AOC=60°,
所以AK2=AO2+OK2-2AO•OK•cos∠AOK=
9
4
,所以AK=
3
2

在Rt△AMK中,
AK=
3
2
MK=
1
2
BO=
1
2

AM=
10
2

cos∠MAK=
AK
MA
=
3
10
=
3
10
10

∴直线AM与面AOC所成角的余弦值是
3
10
10
…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,SA=AD,M为AB的中点,N为SC的中点.
(1)求证:MN平面SAD;
(2)求证:平面SMC⊥平面SCD;
(3)记
CD
AD
,求实数λ的值,使得直线SM与平面SCD所成的角为30°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求多面体ADC-A1B1C1的体积;
(3)求二面角D-CB1-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正四棱锥P-ABCD中,侧棱PA与底面ABCD所成的角的正切值为
6
2

(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

E是二面角α---l---β的棱上一点,EF?β,EF与l成45°角,与α成30°角,则该二面角的大小为(  )
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,A(-2,3),B(3,-2),沿x轴把平面直角坐标系折成120°的二面角后,则线段AB的长度为(  )
A.
2
B.2
11
C.3
2
D.4
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面ABCD是菱形,SA=SD=
39
AD=2
3
,且S-AD-B大小为120°,∠DAB=60°.
(1)求异面直线SA与BD所成角的正切值;
(2)求证:二面角A-SD-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1,M是棱SB的中点.
(Ⅰ)求证:AM面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值.

查看答案和解析>>

同步练习册答案