精英家教网 > 高中数学 > 题目详情
10.设点P(x,y)是曲线a|x|+b|y|=1(a>0,b>0)上的动点,且满足$\sqrt{{x}^{2}+{y}^{2}+2y+1}$+$\sqrt{{x}^{2}+{y}^{2}-2y+1}$≤2$\sqrt{2}$,则a+$\sqrt{2}$b的取值范围为[2,+∞).

分析 去掉绝对值,化简曲线a|x|+b|y|=1,再化简不等式$\sqrt{{x}^{2}+{y}^{2}+2y+1}$+$\sqrt{{x}^{2}+{y}^{2}-2y+1}$≤2$\sqrt{2}$,利用它的几何意义列出满足题意的不等式组,求出b与a的取值范围,即得a+$\sqrt{2}$b的取值范围.

解答 解:由曲线a|x|+b|y|=1(a>0,b>0),
当x,y≥0时,化为ax+by=1;
当x≥0,y≤0时,化为ax-by=1;
当x≤0,y≥0时,化为-ax+by=1;
当x≤0,y≤0时,化为-ax-by=1;
画出图象,如图所示,其轨迹为四边形ABCD;
$\sqrt{{x}^{2}+{y}^{2}+2y+1}$+$\sqrt{{x}^{2}+{y}^{2}-2y+1}$≤2$\sqrt{2}$,
变形为$\sqrt{{x}^{2}{+(y+1)}^{2}}$+$\sqrt{{x}^{2}{+(y-1)}^{2}}$≤2$\sqrt{2}$,
上式表示点M(0,1),N(0,-1)与该图象上的点P的距离之和≤2$\sqrt{2}$;
∴$\left\{\begin{array}{l}{2\sqrt{1+\frac{1}{{a}^{2}}}≤2\sqrt{2}}\\{\frac{2}{b}≤2\sqrt{2}}\end{array}\right.$,解得b≥$\frac{\sqrt{2}}{2}$,a≥1;
∴a+$\sqrt{2}$b≥1+$\sqrt{2}$×$\frac{\sqrt{2}}{2}$=2,
其取值范围是[2,+∞).
故答案为:[2,+∞).

点评 本题考查了直线的方程、两点之间的距离公式应用、不等式的性质,考查了分类讨论思想方法、数形结合思想方法,考查了推理能力与计算能力,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知$sinαcosα=\frac{1}{8},α∈(0,\frac{π}{4})$,则sinα-cosα的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用30cm的铁丝围成一个扇形,当扇形半径为$\frac{15}{2}$cm的时候扇形面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:
cos$\frac{4}{3}π$-tan$\frac{π}{4}$+$\frac{1}{3}$tan2$\frac{π}{3}$-sin$\frac{3π}{2}$+cosπ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.y=3sin($\frac{π}{2}$-x)一4sinx的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正实数x,y,z满足z=x2-xy+4y2,则当$\frac{z}{xy}$取得最小值时,$\frac{1}{x}-\frac{2}{y}+\frac{3}{z}$的最小值为$-\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用“<”或“>”填空:
①2.3-0.3>2.3-0.4;②0.6-2<0.6-3;③0.3x>1(x<0);
④log${\;}_{\sqrt{2}}$3<log${\;}_{\sqrt{2}}$3.1;⑤log0.5$\frac{1}{3}$<log0.5$\frac{1}{4}$;⑥log${\;}_{\frac{1}{3}}$0.2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,$\overrightarrow{BP}=2\overrightarrow{PA}$,点P的轨迹为曲线C.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线 T的极坐标方程为ρ=-4sinθ.
( I)以直线AB的倾斜角α为参数,求曲线C的参数方程;
(Ⅱ)若D为曲线 T上一点,求|PD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.现以AD为一边向梯形外作矩形ADEF,然后沿边AD将矩形ADEF翻折,使平面ADEF与平面ABCD垂直.
(1)求证:BC⊥平面BDE;
(2)若点D到平面BEC的距离为$\frac{{\sqrt{6}}}{3}$,求三棱锥F-BDE的体积.

查看答案和解析>>

同步练习册答案