(08年福建卷文)(本小题满分12分)
如图,在四棱锥P―ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=
,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的余弦值;
(Ⅲ)求点A到平面PCD的距离。
![]()
解析:(Ⅰ)、本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力,逻辑思维能力和运算能力。
解法一:
(Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.
又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO
平面PAD,
所以PO⊥平面ABCD.
![]()
(Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC.
由(Ⅰ)知PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角.
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=
,
在Rt△POA中,因为AP=
,AO=1,所以OP=1,
在Rt△PBO中,PB=
,
,
所以异面直线PB与CD所成的角的余弦值为
.
(Ⅲ)由(Ⅱ)得CD=OB=
,
在Rt△POC中,PC=
,
所以PC=CD=DP,S△PCD=
?2=
。
又![]()
设点A到平面PCD的距离h,
由VP-ACD=VA-PCD,
得
S△ACD?OP=
S△PCD?h,
即
×1×1=
×
×h,
解得
。
解法二:
(Ⅰ)同解法一,
(Ⅱ)以O为坐标原点,
的方向分别为x轴、y轴、z轴的正方向,
,依题意,易得
,
所以![]()
.
所以异面直线
与
所成的角是
.
![]()
(Ⅲ)设平面
的法向量为
.
由(Ⅱ)得![]()
则
所以
即
,
取
,得平面
的一个法向量为
.
又
。
从而点A到平面
的距离![]()
科目:高中数学 来源: 题型:
(08年福建卷文)(本小题满分12分)
已知{an}是正数组成的数列,a1=1,且点(
)(n
N*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+
,求证:
。
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年福建卷文)(本小题满分12分)
已知{an}是正数组成的数列,a1=1,且点(
)(n
N*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+
,求证:
。
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年福建卷文)(本小题满分12分)
如图,在四棱锥P―ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=
,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PB与CD所成角的余弦值;
(Ⅲ)求点A到平面PCD的距离。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com