精英家教网 > 高中数学 > 题目详情
已知函数,且f(1)=2
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)在(1,+∞)上的单调性,并证明;
(3)若f(a)>2,求a的取值范围.
【答案】分析:(1)由已知中f(1)=2,代入可得m的值,进而求出函数的解析式,根据函数奇偶性的定义判断f(-x)与f(x)的关系,可得函数的奇偶性
(2)任取1<x1<x2,判断f(x2)与f(x1)的大小,进而根据函数单调性的定义,可得函数的单调性
(3)由(1)中所得函数的解析式,构造关于a的不等式,解不等式可得答案.
解答:解:∵,且f(1)=2
∴1+m=2,解得 m=1…(1分)
(1)y=f(x)为奇函数,理由如下:…..(2分)
,定义域为(-∞,0)∪(0,+∞),关于原点对称…..(3分)

所以y=f(x)为奇函数…(4分)
(2)f(x)在(1,+∞)上的单调递增,理由如下…..(5分)
设1<x1<x2
…(7分)
∵1<x1<x2
∴x2-x1>0,>0
故f(x2)-f(x1)>0,即f(x2)>f(x1),f(x)在(1,+∞)上的单调递增  …(9分)
(3)若f(a)>2,
>2,显然a>0
则原不等式可化为a2-2a+1=(a-1)2>0
解得a>0且a≠1
点评:本题考查的知识点是函数的奇偶性,函数的单调性,熟练掌握函数奇偶性与单调性的定义是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年安徽省黄山市屯溪一中高三(上)第三次月考数学试卷(文科)(解析版) 题型:解答题

已知函数,且f(1)=log162,f(-2)=1.
(1)求函数f(x)的表达式;
(2)若数列xn的项满足xn=[1-f(1)]•[1-f(2)]•…•[1-f(n)],试求x1,x2,x3,x4
(3)猜想数列xn的通项,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省舟山市岱山县大衢中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数,且f(1)=2,
(1)求a、b的值;
(2)判断函数f(x)的奇偶性;
(3)判断f(x)在(1,+∞)上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省阜阳三中高一(上)第一次调研数学试卷(解析版) 题型:解答题

已知函数,且f(1)=2,
(1)求a、b的值;
(2)判断f(x)在(1,+∞)上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省南昌外国语学校高三(上)11月月考数学试卷(理科)(解析版) 题型:解答题

已知函数,且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<-1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;
(3)当x∈[1,2]时,不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省中山实验高中高一(上)10月段考试数学试卷(解析版) 题型:解答题

已知函数,且f(1)=3
(I)求a的值;
(II)判断函数的奇偶性;
(III)判断函数f(x)在(1,+∞)上是增函数还是减函数?并证明.

查看答案和解析>>

同步练习册答案