精英家教网 > 高中数学 > 题目详情

在极坐标系中,从极点O作直线与另一直线相交于点M,在OM上取一点P,使

(1)求点P的轨迹方程;(2)设R为上任意一点,试求RP的最小值.

 

【答案】

解:(1)设,因为在直线OM上,,所以 

(2)由直线和P的轨迹,由此可知RP的最小值为1. 

【解析】考查学生综合运用直线与圆方程解决数学问题的能力,以及会求简单曲线的极坐标方程.

(1)设动点P的坐标为(ρ,θ),M的坐标为(ρ0,θ),则ρρ0=12,由ρ0cosθ=4,得到ρ=3cosθ即为所求

(2)由(1)知,点P的轨迹以(,0)为圆心,半径为 的圆,显然圆与x轴的交点(除原点)与直线x=4的最小距离为1,所以RP的最小值为1

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中,从极点O作直线与另一直线l:pcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,从极点O作直线与另一直线l:ρcosθ=4相交于点M,在OM上取一点P,使OM•OP=12.设R为l上任意一点,则RP的最小值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,从极点O作直线与另一直线l:ρcosθ=4相交于点M,在OM上取一点P,使
OM
OP
=12.
(1)求点P的轨迹方程;(2)设R为l上任意一点,试求RP的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年广东省高考冲刺强化训练试卷二文科数学 题型:填空题

(坐标系与参数方程选做题)在极坐标系中,从极点O作直线与另一直线相交于点M,在OM上取一点P,使.设R为上任意一点,则RP的最小值    

 

查看答案和解析>>

同步练习册答案