精英家教网 > 高中数学 > 题目详情
(12分)已知函数
(1)若当的表达式;
(2)求实数上是单调函数.
(1);(2)

试题分析:(1)由可求出f(x)的单调区间,进而得到f(x)在处取得最大值,然后讨论两种情况下的最大值,最终通过解方程求出a值.
(2)先求出,然后求导,利用导数研究其单调区间,由于含有参数a,所以应注意对a进行讨论求解.
(1)
单调递减,
所以取最大值

解得符合题意

解得舍去

解得舍去
综上
(2)


所以上单调递减



上不单调
综上
点评:利用导数研究单调区间,就是根据导数大(小)于零,解不等式求出其单调增(减)区间,含参时要注意对参数进行讨论,求导时还要注意函数的定义域.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分) 已知函数,函数
(I)当时,求函数的表达式;
(II)若,且函数上的最小值是2 ,求的值;
(III)对于(II)中所求的a值,若函数,恰有三个零点,求b的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数 
(1)若,
①求的值;
的最小值。
(参考数据
(2) 当上是单调函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如下图,已知则当的大致图像为(     )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,其中是自然常数,
(Ⅰ)当时, 研究的单调性与极值;
(Ⅱ)在(Ⅰ)的条件下,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数有两个零点,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知R上可导函数的图象如图所示,则不等式的解集为(     )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则它的单调减区间是
A.(-∞,0)B.(0,+ ∞)
C.(-1,1)D.(-∞,-1)和(1,+ ∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数处有极值,则函数的图象在处的切线的斜率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案