精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|(x﹣a)[x﹣(a+3)]≤0}(a∈R),B={x|x2﹣4x﹣5>0}.
(1)若A∩B=,求实数a的取值范围;
(2)若A∪B=B,求实数a的取值范围.

【答案】
(1)解:A={x|(x﹣a)[x﹣(a+3)]≤0}={x|a≤x≤a+3},B={x|x2﹣4x﹣5>0}={x|x<﹣1或x>5},

要使A∩B=,则需满足下列不等式组 ,解此不等式组得﹣1≤a≤2,则实数a的取值范围为[﹣1,2]


(2)解:要使A∪B=B,即A是B的子集,则需满足a+3<﹣1或a>5,

解得a>5或a<﹣4,即a的取值范围是{a|a>5或a<﹣4}


【解析】(1)先化简集合A,B,再根据A∩B=,即可求得a的值.(2)先求A∪B=B,即A是B的子集,即可求得a的取值范围.
【考点精析】掌握集合的并集运算和集合的交集运算是解答本题的根本,需要知道并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数,
(1)求实数a的值;
(2)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围;
(3)设关于x的方程f(4x﹣b)+f(﹣2x+1)=0有实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣4x+a+3,a∈R.
(1)若函数y=f(x)的图象与x轴无交点,求a的取值范围;
(2)若函数y=f(x)在[﹣1,1]上存在零点,求a的取值范围;
(3)设函数g(x)=bx+5﹣2b,b∈R.当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),焦点到准线的距离为,过点作直线交抛物线于点(点在第一象限).

()若点焦点重合,且弦长,求直线的方程;

()若点关于轴的对称点为,直线x轴于点,且,求证:点B的坐标是,并求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为,且.

求此抛物线的方程;

过点做直线交抛物线两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x
(1)求函数f(x)在R上的解析式;
(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轮船从某港口将一些物品送到正航行的轮船上,在轮船出发时,轮船位于港口北偏西且与相距20海里的处,并正以30海里的航速沿正东方向匀速行驶,假设轮船沿直线方向以海里/小时的航速匀速行驶,经过小时与轮船相遇.

(1)若使相遇时轮船航距最短,则轮船的航行速度大小应为多少?

(2)假设轮船的最高航速只能达到30海里/小时,则轮船以多大速度及什么航行方向才能在最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为 的圆过点,且圆心在直线 .

(1)求圆心为的圆的标准方程;

(2)过点 作圆的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合M={x|﹣2≤x≤2,N=y|0≤y≤2}.给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系是

查看答案和解析>>

同步练习册答案