【题目】将正方体ABCD﹣A1B1C1D1沿三角形A1BC1所在平面削去一角可得到如图所示的几何体.
![]()
(1)连结BD,BD1,证明:平面BDD1⊥平面A1BC1;
(2)已知P,Q,R分别是正方形ABCDCDD1C1ADD1A1的中心(即对角线交点),证明:平面PQR∥平面A1BC1.
【答案】(1)答案见解析.(2)答案见解析
【解析】
(1)连接AC,证明A1C1⊥平面BDD1, 平面BDD1⊥平面A1BC1即得证;(2)连接A1D,BD,C1D,证明PQ∥平面A1BC1,PR∥平面A1BC1, 平面PQR∥平面A1BC1即得证.
(1)连接AC,∵正方体ABCD﹣A1B1C1D1,
∴AA1∥CC1,
∴A,A1,C,C1共面,
∵正方体ABCD﹣A1B1C1D1,
∴DD1⊥平面A1C1D1,
∵A1C1在平面A1C1D1内,
∴DD1⊥A1C1,
∵正方体ABCD﹣A1B1C1D1,
∴四边形ABCD为正方形,
∴AC⊥BD,
∵正方体ABCD﹣A1B1C1D1,
∴AA1⊥平面ABCD,
∵BD在平面A1C1D1内,
∴AA1⊥BD,
∵AC∩AA1=A且都在平面AA1C1C捏,
∴BD⊥平面AA1C1C,
∵A1C1在平面AA1C1C内,
∴BD⊥A1C1,
∵BD∩DD1=D,且都在平面BDD1内,
∴A1C1⊥平面BDD1,
∵A1C1在平面A1BC1内,
∴平面BDD1⊥平面A1BC1;
(2)连接A1D,BD,C1D,
∵P,Q,R分别是正方形ABCD,CDD1C1,ADD1A1的中心,
∴P,Q,R分别是BD,C1D,A1D的中点,
∴PQ∥BC1,
∵BC1在平面A1BC1内,PQ不在平面A1BC1内,
∴PQ∥平面A1BC1,
同理可得PR∥平面A1BC1,
又PQ∩PR=P且都在平面PQR内,
∴平面PQR∥平面A1BC1.
![]()
科目:高中数学 来源: 题型:
【题目】我国古代数学家提出的“中国剩余定理”又称“孙子定理”,它在世界数学史上具有光辉的一页,堪称数学史上名垂百世的成就,而且一直启发和指引着历代数学家们.定理涉及的是数的整除问题,其数学思想在近代数学、当代密码学研究及日常生活都有着广泛应用,为世界数学的发展做出了巨大贡献,现有这样一个整除问题:将1到2019这2019个整数中能被5除余1且被7除余2的数按从小到大的顺序排成一列,构成数列
,那么此数列的项数为( )
A.56B.57C.58D.59
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
和圆
,倾斜角为45°的直线
过抛物线
的焦点,且
与圆
相切.
(1)求
的值;
(2)动点
在抛物线
的准线上,动点
在
上,若
在
点处的切线
交
轴于点
,设
.求证点
在定直线上,并求该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示是一个上下底面均是边长为2的正三角形的直三棱柱,且该直三棱柱的高为4,D为AB的中点,E为CC1的中点.
![]()
(1)求DE与平面ABC夹角的正弦值;
(2)求二面角A﹣A1D﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线l的参数方程为
(t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为![]()
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C相交于A,B两点.求![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为
、
、
、
、
五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:
![]()
针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是( )
A. 获得A等级的人数减少了B. 获得B等级的人数增加了1.5倍
C. 获得D等级的人数减少了一半D. 获得E等级的人数相同
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,上、下顶点分别为
,若
,点
关于直线
的对称点在椭圆
上.
(1)求椭圆
的方程与离心率;
(2)过点
做直线
与椭圆
相交于两个不同的点
;若
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com