£¨2013•ÆÖ¶«ÐÂÇø¶þÄ££©ÊýÁÐ{an}Âú×ãan+1=
4an-2
an+1
£¨n¡ÊN*£©£®
¢Ù´æÔÚa1¿ÉÒÔÉú³ÉµÄÊýÁÐ{an}Êdz£ÊýÊýÁУ»
¢Ú¡°ÊýÁÐ{an}ÖдæÔÚijһÏîak=
49
65
¡±ÊÇ¡°ÊýÁÐ{an}ΪÓÐÇîÊýÁС±µÄ³äÒªÌõ¼þ£»
¢ÛÈô{an}Ϊµ¥µ÷µÝÔöÊýÁУ¬Ôòa1µÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬-1£©¡È£¨1£¬2£©£»
¢ÜÖ»Òªa1¡Ù
3k-2k+1
3k-2k
£¬ÆäÖÐk¡ÊN*£¬Ôò
lim
n¡ú¡Þ
an
Ò»¶¨´æÔÚ£»
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ
¢Ù¢Ü
¢Ù¢Ü
£®
·ÖÎö£º¸ù¾ÝÒÑÖªÖÐÊýÁÐ{an}Âú×ãan+1=
4an-2
an+1
£¨n¡ÊN*£©£®¾Ù³öÕýÀýa1=1»òa1=2£¬¿ÉÅжϢ٣»¾Ù³ö·´Àýa1=
1
5
£¬¿ÉÅжϢڣ»¾Ù³ö·´Àýa1=-2£¬¿ÉÅжϢۣ»¹¹ÔìÊýÁÐbn=
an-1
an-2
£¬½áºÏÒÑÖª¿ÉÖ¤µÃÊýÁÐ{bn}ÊÇÒÔ
3
2
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬½ø¶ø¿ÉÅжϢܣ®
½â´ð£º½â£ºµ±a1=1ʱ£¬an=1ºã³ÉÁ¢£¬µ±a1=2ʱ£¬an=2ºã³ÉÁ¢£¬¹Ê¢ÙÕýÈ·£»
µ±a1=
1
5
ʱ£¬a2=-1£¬ÊýÁÐ{an}ΪÓÐÇîÊýÁУ¬µ«²»´æÔÚijһÏîak=
49
65
£¬¹Ê¢Ú´íÎó£»
µ±a1=-2ʱ£¬a1¡Ê£¨-¡Þ£¬-1£©¡È£¨1£¬2£©£¬´Ëʱa2=10 a3=
38
11
£¬ÊýÁв»´æÔÚµ¥µ÷µÝÔöÐÔ£¬¹Ê¢Û´íÎó£»
¡ßan+1=
4an-2
an+1

¡àan+1-1=
4an-2
an+1
-1
=
3an-3
an+1
¡­¢Ù
ÇÒan+1-2=
4an-2
an+1
-2
=
2an-4
an+1
¡­¢Ú
¢Ù¡Â¢ÚµÃ£º
an+1-1
an+1-2
=
3
2
an-1
an-2

Áîbn=
an-1
an-2
£¬ÔòÊýÁÐ{bn}ÊÇÒÔ
3
2
Ϊ¹«±ÈµÄµÈ±ÈÊýÁÐ
Ôòbn=(
3
2
)n-1b1

¡àan=
2•(
3
2
)
n-1
b1+1
(
3
2
)
n-1
b1-1
=2+
3
(
3
2
)
n-1
b1-1

µ±a1¡Ù
3k-2k+1
3k-2k
ʱ£¬2+
3
(
3
2
)
n-1
b1-1
µÄ¼«ÏÞΪ2£¬·ñÔòʽ×ÓÎÞÒâÒ壬¹Ê¢ÜÕýÈ·
¹Ê´ð°¸Îª£º¢Ù¢Ü
µãÆÀ£º±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃΪÔØÌ壬¿¼²éÁËÊýÁеĶ¨Òå¼°ÐÔÖÊ£¬ÔËËãÇ¿¶È´ó£¬±äÐθ´ÔÓ£¬ÊôÓÚÄÑÌâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÆÖ¶«ÐÂÇø¶þÄ££©ÔÚ¡÷ABCÖУ¬a£¬b£¬cÊÇÈý¸öÄڽǣ¬A£¬B£¬CËù¶ÔµÄ±ß£¬Èôa=2£¬b+c=7£¬cosB=-
14
£¬Ôòb=
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÆÖ¶«ÐÂÇø¶þÄ££©ÒÑÖª¸´ÊýzÂú×ãz+i=1£¨ÆäÖÐiΪÐéÊýµ¥Î»£©£¬Ôò|z|=
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÆÖ¶«ÐÂÇø¶þÄ££©ÒÑÖª¼¯ºÏA={-2£¬1£¬2}£¬B={
a
+1£¬a}
£¬ÇÒB⊆A£¬ÔòʵÊýaµÄÖµÊÇ
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÆÖ¶«ÐÂÇø¶þÄ££©°ÑÈý½×ÐÐÁÐʽ|  
2x03
x40
1x-3-1
 |
ÖеÚ1ÐеÚ3ÁÐÔªËصĴúÊýÓà×Óʽ¼ÇΪf£¨x£©£¬Ôò¹ØÓÚxµÄ²»µÈʽf£¨x£©£¼0µÄ½â¼¯Îª
£¨-1£¬4£©
£¨-1£¬4£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÆÖ¶«ÐÂÇø¶þÄ££©ÈôÖ±Ïß3x+4y+m=0ÓëÔ²C£º£¨x-1£©2+£¨y+2£©2=1Óй«¹²µã£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ
[0£¬10]
[0£¬10]
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸