精英家教网 > 高中数学 > 题目详情
已知,函数.
(1)求函数的单调区间;
(2)求证:对于任意的,都有.
(1)单调递增区间为,单调递减区间为,;(2)证明过程详见解析.

试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先对求导,利用单调递增,单调递减,通过解不等式,求出函数的单调区间;第二问,由于对于任意的,都有 对于任意的,都有,利用导数判断函数上的单调性,数形结合求出的最小值和的最大值,进行比较,看是否符合.
(1)函数的定义域为,
因为
所以,当,或时,
时,
所以,的单调递增区间为,单调递减区间为,.        6分
(2)因为在区间上单调递增,在区间上单调递减,

所以,当时,
,可得
所以当时,函数在区间上是增函数,
所以,当时,
所以,当时,
对于任意的,都有,所以
时,函数在区间上是增函数,在区间上是减函数,
所以,当时,
所以,当时,
对于任意的,都有,所以
综上,对于任意的,都有.      13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)(2011•福建)已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+bln x在x=1处有极值.
(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ln x-f′(-1)x2+3x-4,则f′(1)=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数)是定义在(一,0)上的可导函数,其导函数为,且有,则不等式的解集为-------------

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

处有极大值,则常数的值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若,则(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案