精英家教网 > 高中数学 > 题目详情
已知关于x的不等式ex|x-a|≥x在x∈R上恒成立,则实数a的取值范围为(  )
分析:将不等式等价转化为x-a≤-
x
ex
或x-a≥
x
ex
,利用参变量分离法将不等式ex|x-a|≥x在x∈R上恒成立,转化为a≥x+
x
ex
或a≤x-
x
ex
在x∈R上恒成立,令f(x)=x+
x
ex
,g(x)=x-
x
ex
,将问题再一次转化为a≥f(x)max①,或a≤g(x)min②,求解①时,利用导数确定函数f(x)的单调性,从而确定f(x)无最大值,故①无解,求解②时,利用导数确定函数g(x)的单调性,从而求得g(x)的最大值为0,得到a≤0,最后取①②的并集,即可求得实数a的取值范围.
解答:解:∵ex|x-a|≥x,
∴|x-a|≥
x
ex

∴x-a≤-
x
ex
或x-a≥
x
ex

∴a≥x+
x
ex
或a≤x-
x
ex

∵关于x的不等式ex|x-a|≥x在x∈R上恒成立,
∴a≥x+
x
ex
或a≤x-
x
ex
在x∈R上恒成立,
令f(x)=x+
x
ex
,g(x)=x-
x
ex

∴a≥x+
x
ex
或a≤x-
x
ex
在x∈R上恒成立,转化为a≥f(x)max①,或a≤g(x)min②,
下面求解①:
∵f(x)=x+
x
ex

∴f′(x)=1+
(1-x)ex
(ex)2
=
ex-x+1
ex

令h(x)=ex-x+1,则h′(x)=ex-1=0,解得x=0,
当x<0时,h′(x)<0,当x>0时,h′(x)>0,
∴h(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴h(x)的最小值为h(0)=2,
∴h(x)>0对x∈R恒成立,
∴f′(x)=
ex-x+1
ex
>0对x∈R恒成立,
∴f(x)在R上为单调递增函数,
故f(x)无最大值,
∴a无解;
下面求解②:
∵g(x)=x-
x
ex

∴g′(x)=1-
(1-x)ex
(ex)2
=
ex+x-1
ex

令m(x)=ex+x-1,则m′(x)=ex+1>0对x∈R恒成立,
∴m(x)在R上为单调递增函数,
又m(0)=0,
∴当x<0时,m(x)<0,即g′(x)<0,
当x>0时,m(x)>0,即g′(x)>0,
∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴当x=0时,g(x)取得最小值g(x)min=0,
∴a≤0.
综合①②,实数a的取值范围为a≤0.
故选B.
点评:本题考查了函数恒成立问题,绝对值不等式的解法.对于函数的恒成立问题,一般选用参变量分离法、最值法、数形结合法进行求解.本题运用了参变量分离的方法进行求解,转化成求函数的最值,运用了导数研究函数的最值问题.对于含有绝对值的问题,一般运用绝对值的定义去掉绝对值,本题运用了绝对值不等式的解法进行求解.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广东模拟)已知函数f(x)=ax•lnx+b(a,b∈R),在点(e,f(e))处的切线方程是2x-y-e=0(e为自然对数的底).
(1)求实数a,b的值及f(x)的解析式;
(2)若t是正数,设h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若关于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)对一切x∈(0,6)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+2x2-3x.
(Ⅰ)求证:函数f(x)在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,
e
≈1.6
,e0.3≈1.3)
(Ⅱ)当x≥1时,若关于x的不等式f(x)≥ax恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3e|x|+a(e=2.71828…是自然对数的底数)的最小值为3.
(Ⅰ)求实数a的值;
(Ⅱ)已知b∈R且x<0,试解关于x的不等式 lnf(x)-ln3<x2+(2b-1)x-3b2
(Ⅲ)已知m∈Z且m>1.若存在实数t∈[-1,+∞),使得对任意的x∈[1,m],都有f(x+t)≤3ex,试求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(坐标系与参数方程选做题)在直角坐标系x0y中,以原点为极点,x轴非负半轴为极轴建立极坐标系,已知圆C与直线l的方程分别为:ρ=2sinθ,
x=x0+
2
t
y=
2
t
(t为参数).若圆C被直线l平分,则实数x0的值为
-1
-1

(B)(不等式选做题)若关于x的不等式|x-m|<2成立的充分不必要条件是2≤x≤3,则实数m的取值范围是
(1,4)
(1,4)

(C) (几何证明选讲) 如图,割线PBC经过圆心O,OB=PB=1,OB绕点O逆时针旋转120°到OD,连PD交圆O于点E,则PE=
3
7
7
3
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知一个袋中装有3个白球和3个红球,这些球除颜色外都相同.

(1)每次从袋中取一个球,取出后不放回,直到取出1个红球为止,求取球次数ξ的分布列和数学期望Eξ;

(2)每次从袋中取一个球,取出后放回接着再取一个球,这样取3次,求取出红球次数η的数学期望Eη.

(文)已知关于x的不等式loga(8-ax)>1在区间[1,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案