精英家教网 > 高中数学 > 题目详情
甲、乙两射手独立地进行射击,设甲击中靶的概率为0.9,乙击中靶的概率为0.8,试求下列条件的概率;
(1)甲乙两人都中靶的概率;
(2)甲、乙两人至少有1人中靶的概率.
考点:相互独立事件的概率乘法公式,互斥事件的概率加法公式
专题:概率与统计
分析:(1)在一次射击中,甲、乙同时射中目标的概率为单独射中目标时的概率之积计算.
(2)根据互斥的概率,甲、乙两人至少有1人中靶的概率的对立事件为甲乙都不中.
解答: 解:(1)∵甲射中目标的概率为0.9,乙射中目标的概率为0.8,
∴甲、乙同时射中目标的概率是0.9×0.8=0.72.
(2)甲、乙两人至少有1人中靶的概率,包括甲、乙两人都中靶,甲中靶乙不中靶,甲不中靶乙中靶,对立事件是他们都不中,
根据互斥事件的概率计算公式得甲、乙两人至少有1人中靶的概率P=1-(1-0.9)(1-0.8)=0.98
点评:本题利用了概率的性质求解.用到的知识点为:两步完成的事件的概率=第一步事件的概率与第二步事件的概率的积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(π-α)=
3
5
,α∈(
π
2
,π).
(1)求cos(π+α)的值;
(2)求tan(π-α)的值;
(3)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-6x+5,x∈R
(1)求f(x)的单调区间和极值;
(2)若直线y=a与y=f(x)的图象有三个不同的交点,求实数a的取值范围;
(3)已知当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y,m满足|x-m|>|y-m|,则称x比y远离m.
(Ⅰ)若x-1比1远离0,求x的取值范围;
(Ⅱ)对任意两个不相等的正数a,b,证明:
a2+b2
2
比(
a+b
2
2远离0.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆(x+1)2+y2=16的圆心为C,A(1,0)是圆内一点,Q为圆周上任意一点,线段AQ的垂直平分线与CQ的连线交于点M.
(1)求点M的轨迹T的方程;
(2)设直线l:y=kx+1-2k恒过点P,且与曲线T相交于不同的两点B、D,若
PB
PD
5
4
,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

NBA(美国职业篮球联赛)决赛实行7局制,比赛先胜4局者获得比赛的胜利(每局比赛都必须分出胜负,没有平局),比赛随即结束.除第七局甲队获胜的概率是
1
2
外,其余每局比赛甲队获胜的概率都是
2
3
,假设各局比赛结果相互独立.
(1)求甲队以4:0获得胜利的概率;
(2)若每局比赛胜利方得1分,对方得0分,求乙队最终比赛总得分X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(cosx,sinx),
b
=(cosx,
3
cosx),f(x)=
a
b
,x∈R.
(1)求f(x)的单调递增区间;
(2)当x∈[0,
π
2
]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(
π
2
+x)cos(
π
6
-x)的最小正周期为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在杨辉三角中,斜线l的上方从1按箭头方向可以构成一个“锯齿形”的数列{an}:1,3,3,4,6,5,10,…,记其前n项和为Sn,则S27的值为
 

查看答案和解析>>

同步练习册答案