精英家教网 > 高中数学 > 题目详情
已知抛物线C的顶点在坐标原点,焦点在x轴上,抛物线C上的点M(2,m)到焦点F的距离为3.
(Ⅰ)求抛物线C的方程:
(Ⅱ)过点(2,0)的直线l与抛物线C交于A、B两点,若|AB|=4
6
,求直线l的方程.
(Ⅰ)∵抛物线C的顶点在坐标原点,焦点在x轴上,
抛物线C上的点M(2,m)到焦点F的距离为3,
∴设抛物线的方程为y2=2px(p>0),
M到准线的距离为3,即
p
2
+2=3
,解得p=2,
∴抛物线C的方程为y2=4x.…(3分)
(Ⅱ)设直线l的方程为y=k(x-2),
设A(x1,y1),B(x2,y2),
y2=4x,
y=k(x-2),
得k2x2-(4k2+4)x+4k2=0,
根据韦达定理,x1+x2=
4(k2+1)
k2
,x1x2=4.
|AB|2=(1+k2)|x1-x2|2=(1+k2)[(x1+x2)2-4x1x2]
=(1+k2)[
16(k4+2k2+1)
k4
-16]

=16(1+k2)
2k2+1
k4
=96

整理得4k4-3k2-1=0,解得k=±1.
∴直线l的方程为x-y-2=0或x+y-2=0.…(10分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

直线L:
x
4
+
y
3
=1与椭圆E:
x2
16
+
y2
9
=1相交于A,B两点,该椭圆上存在点P,使得△PAB的面积等于3,则这样的点P共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线y=kx-1与双曲线x2-y2=4没有公共点,则实数k的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,以
3
2
为离心率的椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A和B,点P是椭圆位于x轴上方的一点,且△PAB的面积最大值为2.
(Ⅰ)求椭圆方程;
(Ⅱ)设点Q是椭圆位于x轴下方的一点,直线AP、BQ的斜率分别为k1,k2,若k1=7k2,设△BPQ与△APQ的面积分别为S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(-1,
3
2
)
是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A、B是椭圆E上两个动点,是否存在λ,满足
PA
+
PB
PO
(0<λ<4,且λ≠2),且M(2,1)到AB的距离为
5
?若存在,求λ值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:x2+
y2
a2
=1(a>1)
的离心率为e,点F为其下焦点,点O为坐标原点,过F的直线l:y=mx-c(其中c=
a2-1
)与椭圆C相交于P,Q两点,且满足:
OP
OQ
=
a2(c2-m2)-1
2-c2

(Ⅰ)试用a表示m2
(Ⅱ)求e的最大值;
(Ⅲ)若e∈(
1
3
1
2
)
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,F1,F2分别是椭圆的左、右焦点,过点F2与x轴不垂直的直线l交椭圆于A、B两点,则△ABF1的周长为4
2

(1)求椭圆的方程;
(2)若C(
1
3
,0),使得|AC|=|BC|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的焦点在x轴上,O为坐标原点,F是一个焦点,A是一个顶点.若椭圆的长轴长是6,且cos∠OFA=
2
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)求点R(0,1)与椭圆C上的点N之间的最大距离;
(Ⅲ)设Q是椭圆C上的一点,过Q的直线l交x轴于点P(-3,0),交y轴于点M.若
MQ
=2
QP
,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的方程为x2=4y,直线y=2与抛物线C相交于M,N两点,点A,B在抛物线C上.
(Ⅰ)若∠BMN=∠AMN,求证:直线AB的斜率为
2

(Ⅱ)若直线AB的斜率为
2
,求证点N到直线MA,MB的距离相等.

查看答案和解析>>

同步练习册答案