精英家教网 > 高中数学 > 题目详情
已知抛物线C的方程为x2=4y,直线y=2与抛物线C相交于M,N两点,点A,B在抛物线C上.
(Ⅰ)若∠BMN=∠AMN,求证:直线AB的斜率为
2

(Ⅱ)若直线AB的斜率为
2
,求证点N到直线MA,MB的距离相等.
(Ⅰ)设A(x1,y1),B(x2,y2),直线AM的斜率为k,∵∠BMN=∠AMN,所以直线BM的斜率为-k,
可求得M(-2
2
,2),N(2
2
,2)
,则直线AM的方程为y=k(x+2
2
)-2

代入x2=4y得x2-4kx-8
2
k-8=0,∵xAx1=-8
2
k-8∴x1=4k+2
2

同理x2=-4k+2
2
,kAB=
y1-y2
x1-x2
=
x21
4
-
x22
4
x1-x2
=
x1+x2
4
=
2
.(5分)
(Ⅱ)若直线AB的斜率为
2
,由(1)可得:x1=4kAM+2
2
,x2=4kBM+2
2

∴kAB=
y1-y2
x1-x2
=
x21
4
-
x22
4
x1-x2
=
x1+x2
4
=
4(kAM+kBM)+4
2
4
=
2

∴kAM+kBM=0,
∴∠BMN=∠AMN,
故点N到直线MA,MB的距离相等.(10分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点在坐标原点,焦点在x轴上,抛物线C上的点M(2,m)到焦点F的距离为3.
(Ⅰ)求抛物线C的方程:
(Ⅱ)过点(2,0)的直线l与抛物线C交于A、B两点,若|AB|=4
6
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(x0,y0)是椭圆C:
x2
5
+y2=1
上的一点.F1、F2是椭圆C的左右焦点.
(1)若∠F1PF2是钝角,求点P横坐标x0的取值范围;
(2)求代数式
y20
+2x0
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC中,B(-2,0),C(2,0),△ABC的周长为12,动点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设P、Q为E上两点,
OP
OQ
=0
,过原点O作直线PQ的垂线,垂足为M,证明|OM|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1、F2为椭圆
x2
9
+
y2
4
=1
的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则
|PF1|
|PF2|
的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,DA⊥AB,AD=3,AB=4,BC=
3
,点E在线段AB的延长线上.若曲线段DE(含两端点)为某曲线L上的一部分,且曲线L上任一点到A、B两点的距离之和都相等.
(1)建立恰当的直角坐标系,求曲线L的方程;
(2)根据曲线L的方程写出曲线段DE(含两端点)的方程;
(3)若点M为曲线段DE(含两端点)上的任一点,试求|MC|+|MA|的最小值,并求出取得最小值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线l:y=2x-4交抛物线y2=4x于A、B两点,试在抛物线AOB这段曲线上求一点P,使△ABP的面积最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
m
-
y2
n
=1
(mn≠0)的离心率为2,有一个焦点恰好是抛物线y2=4x的焦点,则此双曲线的渐近线方程是(  )
A.
3
x±y=0
B.
3
y=0
C.3x±y=0D.x±3y=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
4
+y2=1的左、右顶点分别为A、B,圆x2+y2=4上有一动点P,P在x轴上方,C(1,0),直线PA交椭圆E于点D,连结DC,PB.
(Ⅰ)若∠ADC=90°,求△ADC的面积S;
(Ⅱ)设直线PB,DC的斜率存在且分别为k1,k2,若k1=2k2,求λ的取值范围.

查看答案和解析>>

同步练习册答案