Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AD¡ÎBC£¬DA¡ÍAB£¬AD=3£¬AB=4£¬BC=
3
£¬µãEÔÚÏ߶ÎABµÄÑÓ³¤ÏßÉÏ£®ÈôÇúÏ߶ÎDE£¨º¬Á½¶Ëµã£©ÎªÄ³ÇúÏßLÉϵÄÒ»²¿·Ö£¬ÇÒÇúÏßLÉÏÈÎÒ»µãµ½A¡¢BÁ½µãµÄ¾àÀëÖ®ºÍ¶¼ÏàµÈ£®
£¨1£©½¨Á¢Ç¡µ±µÄÖ±½Ç×ø±êϵ£¬ÇóÇúÏßLµÄ·½³Ì£»
£¨2£©¸ù¾ÝÇúÏßLµÄ·½³Ìд³öÇúÏ߶ÎDE£¨º¬Á½¶Ëµã£©µÄ·½³Ì£»
£¨3£©ÈôµãMΪÇúÏ߶ÎDE£¨º¬Á½¶Ëµã£©ÉϵÄÈÎÒ»µã£¬ÊÔÇó|MC|+|MA|µÄ×îСֵ£¬²¢Çó³öÈ¡µÃ×îСֵʱµãMµÄ×ø±ê£®
½â£¨1£©Èçͼ£¬ÒÔABËùÔÚµÄÖ±ÏßΪxÖᣬÆ䴹ֱƽ·ÖÏßΪyÖᣬ½¨Á¢ËùʾµÄÖ±½Ç×ø±êϵ£¬
ÔòA(-2£¬0)£¬B(2£¬0)£¬C(2£¬
3
)£¬D(-2£¬3)
£¬|DA|=3£¬|DB|=5£®
É趯µãM£¨x£¬y£©ÎªÇúÏßLÉϵÄÈÎÒ»µã£¬
Ôò|MA|+|MB|=|DA|+|DB|=8£¬
¼´
(x+2)2+y2
+
(x-2)2+y2
=8

ÕûÀíµÃ
x2
16
+
y2
12
=1
£¬ÎªËùÇóÇúÏßLµÄ·½³Ì
£¨2£©ÓÉÌâÒâÖªxD£¼x£¼xE£¬y¡Ý0£¬
¶øxD=xA=-2£¬xE=4
ÔòËùÇóÇúÏ߶ÎDEµÄ·½³ÌΪ
x2
16
+
y2
12
=1(-2¡Üx¡Ü4£¬y¡Ý0)

£¨3£©ÓÉÍÖÔ²µÄ¶¨Òå¼°µãMΪÇúÏ߶ÎDE£¨º¬Á½¶Ëµã£©ÉϵÄÈÎÒ»µã¿ÉÖª|MA|+|MB|=2a=8£¬¼´|MA|=8-|MB|£¬
Ôò|MC|+|MA|=8+|MC|-|MB|¡Ý8-|BC|=8-2
3
£¬
µ±ÇÒ½öµ±µãMλÓÚÏ߶ÎBCµÄ½»µã´¦Ê±µÈºÅ³ÉÁ¢£¬
ÓÉBC¡ÍABÖª´ËʱµãMµÄºá×ø±êΪ2£¬ÔòÆä×Ý×ø±êΪ3£¬
¼´µ±µãMµÄ×ø±êΪ£¨2£¬3£©Ê±|MC|+|MA|ÓÐ×îСֵ8-2
3
£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªÍÖÔ²C£ºx2+
y2
a2
=1(a£¾1)
µÄÀëÐÄÂÊΪe£¬µãFΪÆäϽ¹µã£¬µãOΪ×ø±êÔ­µã£¬¹ýFµÄÖ±Ïßl£ºy=mx-c£¨ÆäÖÐc=
a2-1
£©ÓëÍÖÔ²CÏཻÓÚP£¬QÁ½µã£¬ÇÒÂú×㣺
OP
OQ
=
a2(c2-m2)-1
2-c2
£®
£¨¢ñ£©ÊÔÓÃa±íʾm2£»
£¨¢ò£©ÇóeµÄ×î´óÖµ£»
£¨¢ó£©Èôe¡Ê(
1
3
£¬
1
2
)
£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÅ×ÎïÏßCµÄ¶¥µãΪO£¨0£¬0£©£¬½¹µãF£¨0£¬1£©
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨¢ò£©¹ýF×÷Ö±Ïß½»Å×ÎïÏßÓÚA¡¢BÁ½µã£®ÈôÖ±ÏßOA¡¢OB·Ö±ð½»Ö±Ïßl£ºy=x-2ÓÚM¡¢NÁ½µã£¬Çó|MN|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªOΪ×ø±êÔ­µã£¬FÊÇÅ×ÎïÏßE£ºy2=4xµÄ½¹µã£®
£¨¢ñ£©¹ýF×÷Ö±Ïßl½»Å×ÎïÏßEÓÚP£¬QÁ½µã£¬Çó
OP
OQ
掙术
£¨¢ò£©¹ýµãT£¨t£¬0£©×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïß·Ö±ð½»Å×ÎïÏßEÓÚA£¬B£¬C£¬DËĵ㣬ÇÒM£¬N·Ö±ðΪÏ߶ÎAB£¬CDµÄÖе㣬Çó¡÷TMNµÄÃæ»ý×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÅ×ÎïÏßCµÄ·½³ÌΪx2=4y£¬Ö±Ïßy=2ÓëÅ×ÎïÏßCÏཻÓÚM£¬NÁ½µã£¬µãA£¬BÔÚÅ×ÎïÏßCÉÏ£®
£¨¢ñ£©Èô¡ÏBMN=¡ÏAMN£¬ÇóÖ¤£ºÖ±ÏßABµÄбÂÊΪ
2
£»
£¨¢ò£©ÈôÖ±ÏßABµÄбÂÊΪ
2
£¬ÇóÖ¤µãNµ½Ö±ÏßMA£¬MBµÄ¾àÀëÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÒ»ÌõÇúÏßCÔÚyÖáÓҲ࣬CÉÏÿһµãµ½µãF£¨1£¬0£©µÄ¾àÀë¼õÈ¥Ëüµ½yÖá¾àÀëµÄ²î¶¼ÊÇ1£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl½»ÇúÏßCÓÚA£¬BÁ½µã£¬Ï߶ÎABµÄÖеãΪD£¨2£¬-1£©£¬ÇóÖ±ÏßlµÄÒ»°ãʽ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÍÖÔ²E£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊe=
5
5
£¬¹ýF1µÄÖ±Ïß½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬ÇÒ¡÷MNF2Öܳ¤Îª4
5
£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÒÑÖª¹ýÍÖÔ²ÖÐÐÄ£¬ÇÒбÂÊΪk£¨k¡Ù0£©µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬PÊÇÏ߶ÎABµÄ´¹Ö±Æ½·ÖÏßÓëÍÖÔ²EµÄÒ»¸ö½»µã£¬Èô¡÷APBµÄÃæ»ýΪ
40
9
£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

¹ýµãP£¨1£¬1£©×÷Ö±ÏßÓëË«ÇúÏßx2-
y2
2
=1
½»ÓÚA¡¢BÁ½µã£¬Ê¹µãPΪABÖе㣬ÔòÕâÑùµÄÖ±Ïߣ¨¡¡¡¡£©
A£®´æÔÚÒ»Ìõ£¬ÇÒ·½³ÌΪ2x-y-1=0
B£®´æÔÚÎÞÊýÌõ
C£®´æÔÚÁ½Ìõ£¬·½³ÌΪ2x¡À£¨y+1£©=0
D£®²»´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑ֪˫ÇúÏßC£ºx2-
y2
2
=1
£¬¹ýµãP£¨-1£¬-2£©µÄÖ±Ïß½»CÓÚA£¬BÁ½µã£¬ÇÒµãPΪÏ߶ÎABµÄÖе㣮
£¨1£©ÇóÖ±ÏßABµÄ·½³Ì£»
£¨2£©ÇóÏÒ³¤|AB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸