精英家教网 > 高中数学 > 题目详情
如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)已知过椭圆中心,且斜率为k(k≠0)的直线与椭圆交于A、B两点,P是线段AB的垂直平分线与椭圆E的一个交点,若△APB的面积为
40
9
,求k的值.
(Ⅰ)∵△MNF2周长为4
5

∴4a=4
5

∴a=
5

∵离心率e=
5
5

∴c=1,
b=
a2-c2
=2,
∴椭圆E的方程为
x2
5
+
y2
4
=1

(Ⅱ)直线AB的方程为y=kx,线段AB的垂直平分线为y=-
1
k
x,
y=-
1
k
x与椭圆方程联立,可得x=±
20k2
4k2+5

∴可得P(
20k2
4k2+5
,-
1
k
20k2
4k2+5
),
P到直线AB的距离为d=|
k2+1
k
20k2
4k2+5
|
y=kx与椭圆方程联立,可得x=±
20
4+5k2

∴|AB|=
1+k2
•2
20
4+5k2

∴S△ABP=
1
2
|AB|d|=
1
2
1+k2
•2
20
4+5k2
•|
k2+1
k
20k2
4k2+5
|
∵△APB的面积为
40
9

1
2
1+k2
•2
20
4+5k2
•|
k2+1
k
20k2
4k2+5
|=
40
9

∴k4-2k2+1=0,
∴k=±1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直线l:y=kx+1与双曲线C:3x2-y2=1相交于不同的A,B两点.
(1)求AB的长度;
(2)是否存在实数k,使得以线段AB为直径的圆经过坐标原点?若存在,求出k的值,若不存在,写出理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC中,B(-2,0),C(2,0),△ABC的周长为12,动点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设P、Q为E上两点,
OP
OQ
=0
,过原点O作直线PQ的垂线,垂足为M,证明|OM|为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,DA⊥AB,AD=3,AB=4,BC=
3
,点E在线段AB的延长线上.若曲线段DE(含两端点)为某曲线L上的一部分,且曲线L上任一点到A、B两点的距离之和都相等.
(1)建立恰当的直角坐标系,求曲线L的方程;
(2)根据曲线L的方程写出曲线段DE(含两端点)的方程;
(3)若点M为曲线段DE(含两端点)上的任一点,试求|MC|+|MA|的最小值,并求出取得最小值时点M的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线l:y=2x-4交抛物线y2=4x于A、B两点,试在抛物线AOB这段曲线上求一点P,使△ABP的面积最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点M(2,0)的直线l与抛物线y2=x交于A,B两点,则
OA
OB
的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
m
-
y2
n
=1
(mn≠0)的离心率为2,有一个焦点恰好是抛物线y2=4x的焦点,则此双曲线的渐近线方程是(  )
A.
3
x±y=0
B.
3
y=0
C.3x±y=0D.x±3y=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,a+b=3.
(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l与双曲线
x2
2
-y2=1
的同一支相交于A,B两点,线段AB的中点在直线y=2x上,则直线AB的斜率为(  )
A.4B.2C.
1
2
D.
1
4

查看答案和解析>>

同步练习册答案