精英家教网 > 高中数学 > 题目详情
过点M(2,0)的直线l与抛物线y2=x交于A,B两点,则
OA
OB
的值为(  )
A.0B.1C.2D.3
设过点M(2,0)的直线l的方程为:x=ty+2,
A(x1,y1),B(x2,y2).
联立
x=ty+2
y2=x
,得:y2-ty-2=0.
∴y1+y2=t,y1y2=-2.
x1x2=(ty1+2)(ty2+2)=t2y1y2+2t(y1+y2)+4
=-2t2+2t2+4=4.
OA
OB
=x1x2+y1y2=4-2=2.
故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦点分别为F1、F2,过F1作直线交椭圆于P、Q两点,△F2PQ的周长为4
3

(1)若椭圆的离心率e=
3
3
,求椭圆的方程;
(2)若M为椭圆上一点,
MF1
MF2
=1,求△MF1F2的面积最大时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知O为坐标原点,F是抛物线E:y2=4x的焦点.
(Ⅰ)过F作直线l交抛物线E于P,Q两点,求
OP
OQ
的值;
(Ⅱ)过点T(t,0)作两条互相垂直的直线分别交抛物线E于A,B,C,D四点,且M,N分别为线段AB,CD的中点,求△TMN的面积最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)设直线l交曲线C于A,B两点,线段AB的中点为D(2,-1),求直线l的一般式方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)已知过椭圆中心,且斜率为k(k≠0)的直线与椭圆交于A、B两点,P是线段AB的垂直平分线与椭圆E的一个交点,若△APB的面积为
40
9
,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆C的离心率e=
1
2
,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2
DF2
=
F2E
,点E关于x轴的对称点为G,求直线GD的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点P(1,1)作直线与双曲线x2-
y2
2
=1
交于A、B两点,使点P为AB中点,则这样的直线(  )
A.存在一条,且方程为2x-y-1=0
B.存在无数条
C.存在两条,方程为2x±(y+1)=0
D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)上横坐标为1的点M到抛物线C焦点F的距离|MF|=2.
(1)试求抛物线C的标准方程;
(2)若直线l与抛物线C相交所得的弦的中点为(2,1),试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点M(
3
,0),椭圆
x2
4
+y2=1与直线y=k(x+
3
)交于点A、B,则△ABM的周长为(  )
A.4B.8C.12D.16

查看答案和解析>>

同步练习册答案