精英家教网 > 高中数学 > 题目详情
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)满足关系y=-x+120.
(1)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(2)若该商场获得利润不低于500元,试确定销售单价x的范围.
【答案】分析:(1)确定销售利润,利用配方法求最值;
(2)利用该商场获得利润不低于500元,建立不等式,即可确定销售单价x的范围.
解答:解:(1)由题意,销售利润为W=(-x+120)(x-60)=-x2+180x-7200=-(x-90)2+900,
∵试销期间销售单价不低于成本单价,且获利不得高于45%,
有-(x-90)2+900≤1.45×60x,
∴60<x≤87
∴当x=87时,利润最大,最大利润是891;
(2)∵该商场获得利润不低于500元,∴(x-60)(-x+120)≥500
∴70≤x≤110
∴70≤x≤110时,该商场获得利润不低于500元.
答:(1)当x=87时,利润最大,最大利润是891;(2)该商场获得利润不低于500元,销售单价x的范围为[70,110].
点评:本题考查函数模型的构建,考查函数的最值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•内江一模)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)满足关系y=-x+120.
(1)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(2)若该商场获得利润不低于500元,试确定销售单价x的范围.

查看答案和解析>>

科目:高中数学 来源:内江一模 题型:解答题

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)满足关系y=-x+120.
(1)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(2)若该商场获得利润不低于500元,试确定销售单价x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,时,

(1)求一次函数的表达式;

(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

(3)若该商场获得利润不低于500元,试确定销售单价的范围.

查看答案和解析>>

科目:高中数学 来源:2013年四川省内江市高考数学一模试卷(文科)(解析版) 题型:解答题

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)满足关系y=-x+120.
(1)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(2)若该商场获得利润不低于500元,试确定销售单价x的范围.

查看答案和解析>>

同步练习册答案