精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距为,设右焦点为,过原点的直线与椭圆交于两点,线段的中点为,线段的中点为,且.

(1)求弦的长;

(2)当直线的斜率,且直线时, 交椭圆于,若点在第一象限,求证:直线轴围成一个等腰三角形.

【答案】(1)(2)见解析

【解析】试题分析:(1)关键求点A坐标关系:设,则根据条件表示 ,再根据向量数量积得,即得的长为.(2)证直线轴围成一个等腰三角形,就是证直线的斜率相反.先确定A点坐标,并求出椭圆方程,再设与椭圆方程联立方程组,结合韦达定理可得两点横坐标和与积的关系,代入直线的斜率公式,并化简可证它们为相反关系.

试题解析:(1)因为椭圆 的焦距为,则

,则

,则,所以的长为.

(2)因为直线的斜率时,且直线,所以,设

∴由(1)知, ,所以,又半焦距为,所以椭圆,联解:

,设,则

设直线的斜率分别为,则 ,那么

所以直线轴围成一个等腰三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知3sinα﹣2cosα=0,求下列式子的值:
(1) +
(2)sin2α﹣2sinαcosα+4cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 + =1表示焦点在y轴上的椭圆,命题q:双曲线 =1的离心率e∈( ),若命题p、q中有且只有一个为真命题,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列4个命题: ①“若x+y=0,则x,y互为相反数”的逆否命题;
②“若a>b,则a2>b2”的逆命题;
③“若x≤﹣3,则x2﹣x﹣6>0”的否命题;
④“若ab是无理数,则a,b是无理数”的逆命题.
其中真命题的个数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且满足(2b﹣a)cosC=ccosA. (Ⅰ)求角C的大小;
(Ⅱ)设y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判断当y取得最大值时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且在(﹣∞,0]上是增函数,设 ,c=f(0.20.6),则a,b,c的大小关系是(
A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在长方体ABCD﹣A1B1C1D1中,E,M,N分别是BC,AE,D1C的中点,AD=AA1 , AB=2AD. (Ⅰ)证明:MN∥平面ADD1A1
(Ⅱ)求直线AD与平面DMN所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 a=2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等差数列,a1=2,{an}的前n项和为Sn , 数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n﹣1)2n+2+4对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在非零整数λ,使不等式sin 对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.
(3)各项均为正整数的无穷等差数列{cn},满足c39=a1007 , 且存在正整数k,使c1 , c39 , ck成等比数列,若数列{cn}的公差为d,求d的所有可能取值之和.

查看答案和解析>>

同步练习册答案