精英家教网 > 高中数学 > 题目详情

已知数列{an}中,a1=0,an+1=an+2n-1(n∈N*).求数列{an}的通项公式an

解:法一:(累加法)
∵an+1=an+2n-1,
∴an-an-1=2(n-1)-1,
an-1-an-2=2(n-2)-1,
a3-a2=2×2-1,
a2-a1=2×1-1.
以上各式左右两边分别相加得
an-a1=2[1+2+3+…+(n-1)]-(n-1)
=n(n-1)-(n-1)=(n-1)2
∴an=(n-1)2
法二:(迭代法)
∵an+1=an+2n-1,
∴an=an-an-1+an-1
=(an-an-1)+(an-1-an-2)+an-2
=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1
=2(n-1)-1+2(n-2)-1++2×2-1+2×1-1+0
=(n-1)2
分析:(法一)an+1-an=2n-1可得an-an-1=2n-3,…a2-a1=1利用累加法可求an
(法二)an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,由已知可得an-an-1=2n-3,代入可求.
点评:本题主要考查了由递推关系求数列的通项公式,当an-an-1=f(n)时,求通项常用累加法或迭代法.属于基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案