精英家教网 > 高中数学 > 题目详情
已知函数(a∈R)
(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;
(2)若函数f(x)在(1,+∞)为增函数,求a的取值范围;
(3)讨论方程f(x)=0解的个数,并说明理由.
【答案】分析:(1)根据曲线y=f(x)在A点处的切线方程是y=x+b,建立关于a和b的方程组,解之即可;
(2)处理函数的单调性问题通常采用导法好用,若函数f(x)在(1,+∞)为增函数,则在(1,+∞)上恒成立;
(3)对a进行分类讨论:当a=0时,当a<0时,当a>0时.把a代入f(x)中确定出f(x)的解析式,然后根据f(x)的解析式求出f(x)的导函数,分别令导函数大于0和小于0得到函数的单调区间,根据函数的增减性得到f(x)的最小值,根据最小值小于0得到函数没有零点即零点个数为0.
解答:解:(1)因为:(x>0),又f(x)在x=2处的切线方程为y=x+b
所以解得:a=2,b=-2ln2(3分)
(2)若函数f(x)在(1,+∞)上恒成立.则在(1,+∞)上恒成立,
即:a≤x2在(1,+∞)上恒成立.所以有a≤1(13分)
(3)当a=0时,f(x)在定义域(0,+∞)上恒大于0,此时方程无解;(7分)
当a<0时,在(0,+∞)上恒成立,所以f(x)在定义域(0,+∞)上为增函数.∵,所以方程有惟一解.(8分)
当a>0时,
因为当时,f'(x)>0,f(x)在内为减函数;
时,f(x)在内为增函数.
所以当时,有极小值即为最小值.(10分)
当a∈(0,e)时,,此方程无解;
当a=e时,.此方程有惟一解
当a∈(e,+∞)时,
因为,所以方程f(x)=0在区间上有惟一解,(12分)
因为当x>1时,(x-lnx)'>0,所以x-lnx>1
所以
因为,所以
所以方程f(x)=0在区间上有惟一解.
所以方程f(x)=0在区间(e,+∞)上有惟两解.(14分)
综上所述:当a∈[0,e)时,方程无解;
当a<0或a=e时,方程有惟一解;
当a>e时方程有两解.(14分)
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的单调性,同时考查分类讨论的思想,计算能力,属于中档题.此类题解答的关键是学生会根据导函数的正负得到函数的单调区间,会根据函数的增减性得到函数的最值,掌握函数零点的判断方法,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年北京市十一学校高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省百所重点高中高三(上)段考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省常州高级中学高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知函数(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x,y),使得:①;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省天水一中高一(下)第二次段考数学试卷(解析版) 题型:解答题

已知函数,a∈R.
(1)当a=1时,求函数f(x)的最大值;
(2)如果对于区间上的任意一个x,都有f(x)≤1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013届广东省梅州市高二第二学期3月月考理科数学试卷 题型:解答题

 

已知函数  (a∈R).

 (1)若在[1,e]上是增函数,求a的取值范围; 

(2)若a=1,1≤x≤e,证明:<.

 

查看答案和解析>>

同步练习册答案