精英家教网 > 高中数学 > 题目详情
15.在n元数集S={a1,a2,…,an}中,设x(S)=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$,若S的非空子集A满足x(A)=x(S),则称A是集合S的一个“平均子集”,并记数集S的k元“平均子集”的个数为fs(k).已知集合S={1,2,3,4,5,6,7,8,9},T={-4,-3,-2,-1,0,1,2,3,4},则下列说法错误的是(  )
A.fs(9)=fT(1)B.fs(8)=fT(1)C.fs(6)=fT(4)D.fs(5)=fT(4)

分析 根据新定义求出k元平均子集的个数,逐一判断.

解答 解:X(S)=5,将S中的元素分成5组(1,9),(2,8),(3,7),(4,6),(5).
则fS(1)=${C}_{1}^{1}$=1,fS(2)=${C}_{4}^{1}$=4,fS(3)=${C}_{1}^{1}$•${C}_{4}^{1}$=4,fS(4)=${C}_{4}^{2}$=6,fS(5)=${C}_{1}^{1}$•${C}_{4}^{2}$=6,
同理:X(T)=0,将T中的元素分成5组(1,-1),(2,-2),(3,-3),(4,-4),(0).
则fT(1)=${C}_{1}^{1}$=1,fT(2)=${C}_{4}^{1}$=4,fT(3)=${C}_{1}^{1}$•${C}_{4}^{1}$=4,fT(4)=${C}_{4}^{2}$=6,fT(5)=${C}_{1}^{1}$•${C}_{4}^{2}$=6,fT(8)=${C}_{4}^{4}$=1,
∴fS(4)=fS(5)=fT(4)=6.
故选:D.

点评 本题考查了对新定义的理解,组合数公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.重庆一中开展支教活动,有五名教师被随机的分到49中学、璧山中学、礼嘉中学,且每个中学至少一名教师,
(1)求共有多少种分派方法;(用数字作答)
(2)求璧山中学分到两名教师的概率;
(3)设随机变量X为这五名教师分到璧山中学的人数,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知两条直线l1:(a-1)x+2y+1=0,l2:x+ay+1=0,求满足下列条件的a值:
(1)l1∥l2
(2)l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在五棱锥F-ABCDE中,平面AEF⊥平面ABCDE,AF=EF=1,AB=DE=2,BC=CD=3,且∠AFE=∠ABC=∠BCD=∠CDE=90°.
(1)已知点G在线段FD上,确定G的位置,使得AG∥平面BCF;
(2)点M,N分别在线段DE,BC上,若沿直线MN将四边形MNCD向上翻折,D与F恰好重合,求直线BM与平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合P={x|(x-1)2<4,x∈R},Q={-1,0,1,2,3},则P∩Q=(  )
A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{2a}{cosA}$=$\frac{3c-2b}{cosB}$.
(1)若b=$\sqrt{5}$sinB,求a;
(2)若a=$\sqrt{6}$,△ABC的面积为$\frac{\sqrt{5}}{2}$,求b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|<$\frac{π}{2}$)的部分图象如图所示,下列说法正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点(-$\frac{5π}{12}$.0)对称
C.将函数f(x)的图象向左平移$\frac{x}{6}$个单位得到的函数图象关于y轴对称
D.函数f(x)的单调递增区间是[kx+$\frac{7π}{12}$,kπ+$\frac{13π}{12}$],(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在棱长为1正方体ABCD-A1B1C1D1中,点E,F,G分别为DD1,BD,BB1的中点,则EF,CG所成角的余弦值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{15}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{15}}}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个长方体共顶点的三个面的面积分别是$\sqrt{2},\sqrt{3},\sqrt{6}$,这个长方体的八个顶点都在同一个球面上,则这个球的表面积是6π.

查看答案和解析>>

同步练习册答案