(本题满分14分)
已知函数
的图象经过点
和
,记
(
)
(1)求数列
的通项公式;
(2)设
,若
,求
的最小值;
(3)求使不等式
对一切
均成立的最大实数
.
(1)
;
(2)
; (3)
.
【解析】本试题主要是借助于函数为背景求解数列的通项公式,并利用错位相减法得到数列的和,同时利用放缩法得到不等式的证明。
(1)因为函数
的图象经过点
和
,记
,联立方程组得到a,b的值。
(2)由(1)得
,然后利用错位相减法得到数列的和。
(3)要使不等式
对一切
均成立,则可以分离参数p,得到关于n的表达式,进而求解数列的最值,得到参数p的范围。
解:(1)由题意得
,解得
,
…………2分
…………4分
(2)由(1)得
,
①
② ①-②得
.
, …………7分
设
,则由![]()
得
随
的增大而减小,
随
的增大而增大。
时,
又
恒成立,
………10分
(3)由题意得
恒成立
记
,则
…………12分
是随
的增大而增大
的最小值为
,
,即
. …………14分
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com