精英家教网 > 高中数学 > 题目详情

=0是函数的一个极值点.

(Ⅰ)求的关系式(用表示,并求的单调区间;

(Ⅱ)设>0,()=,问是否存在〔-2,2〕,使得≤l成立?若存在,求的取值范围;若不存在,说明理由.

解:(Ⅰ)    

    由,得 

   ∴

     令,得

     由于极值点,故,即

    当时,,故的单调增区间是,单调减区间是 

时,,故的单调增区间是,单调减区间是

(Ⅱ)当时,在[-2,0]上单调递减,在[0,2]上单调递增,

    因此在[-2,2]上的值域为

    而在[-2,2]上递减,所以值域

    因为在[-2,2]上

所以,不存在使得成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
kx+b
x2+c
(c>0且c≠1,k>0)恰有一个极大值点和一个极小值点,且其中一个极值点是x=-c
(1)求函数f(x)的另一个极值点;
(2)设函数f(x)的极大值为M,极小值为m,若M-m≥1对b∈[1,
3
2
]
恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设三角函数f(x)=sin(
5
+
π
3
)
,其中k≠0.
(1)写出f(x)极大值M、极小值m与最小正周期;
(2)试求最小的正整数k,使得当自变量x在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是M与一个值是m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+bsinx,当数学公式时,f(x)取得极小值数学公式
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记数学公式,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式(c>0且c≠1,k>0)恰有一个极大值点和一个极小值点,且其中一个极值点是x=-c
(1)求函数f(x)的另一个极值点;
(2)设函数f(x)的极大值为M,极小值为m,若M-m≥1对数学公式恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案