精英家教网 > 高中数学 > 题目详情
关于函数y=的单调性,以下叙述是否正确:“y=是在(-∞,0)∪(0,+∞)上的减函数.”

解:y=是在(-∞,0)这个区间和(0,+∞)这个区间上分别是减函数,但它在区间(-∞,0)∪(0,+∞)上不具有单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

建造一个容积为8m3、深为2m的长方体形无盖水池,如果池底和池壁的造价分别为120元/m2和80元/m2
(1)求总造价y(元)关于底面一边长x(m)的函数解析式;
(2)指出(1)所求函数在区间(0,2)和(2,+∞)上的单调性;并选其中一个给予证明.
(3)说明如何建造使得总造价最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax+a-x(a>0且a≠1)
(Ⅰ)证明函数f ( x )的图象关于y轴对称;
(Ⅱ)判断f(x)在(0,+∞)上的单调性,并用定义加以证明;
(Ⅲ)当x∈[1,2]时函数f (x )的最大值为
5
2
,求此时a的值.
(Ⅳ)当x∈[-2,-1]时函数f (x )的最大值为
5
2
,求此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,对任意x,y∈R有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4;
(1)求f(1),f(4)的值;
(2)判断并证明f(x)的单调性;
(3)若关于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整数为2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=aln(x-1)
,其中a≠0.
(Ⅰ)若函数y=g(x)图象恒过定点P,且点P关于直线x=
3
2
的对称点在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x+1),讨论F(x)的单调性;
(Ⅲ)在(Ⅰ)的条件下,设G(x)=
f(x),x≤2
g(x),x>2
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案