精英家教网 > 高中数学 > 题目详情
(2013•渭南二模)在等差数列{an}中,a2+a7=-23,a3+a8=-29.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an+bn}是首项为1,公比为c的等比数列,求{bn}的前n项和Sn
分析:(Ⅰ)依题意 a3+a8-(a2+a7)=2d=-6,从而d=-3.由此能求出数列{an}的通项公式.
(Ⅱ)由数列{an+bn}是首项为1,公比为c的等比数列,得-3n+2+bn=cn-1,所以 bn=3n-2+cn-1.所以 Sn=[1+4+7+…+(3n-2)]+(1+c+c2+…+cn-1)=
n(3n-1)
2
+(1+c+c2+…+cn-1)
.由此能求出{bn}的前n项和Sn
解答:(Ⅰ)解:设等差数列{an}的公差是d.
依题意 a3+a8-(a2+a7)=2d=-6,从而d=-3.
所以 a2+a7=2a1+7d=-23,解得 a1=-1.
所以数列{an}的通项公式为 an=-3n+2.
(Ⅱ)解:由数列{an+bn}是首项为1,公比为c的等比数列,
得 an+bn=cn-1,即-3n+2+bn=cn-1
所以 bn=3n-2+cn-1
所以 Sn=[1+4+7+…+(3n-2)]+(1+c+c2+…+cn-1)
=
n(3n-1)
2
+(1+c+c2+…+cn-1)

从而当c=1时,Sn=
n(3n-1)
2
+n=
3n2+n
2

当c≠1时,Sn=
n(3n-1)
2
+
1-cn
1-c
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•渭南二模)某几何体的主视图与俯视图如图所示,左视图与主视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•渭南二模)若函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=
1gx(x>0)
-
1
x
(x<0)
,则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•渭南二模)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R),它与曲线
x=1+2cosα
y=2+2sinα
(α为参数)相交于两点A和B,则|AB|=
14
14

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•渭南二模)设x∈R,i是虚数单位,则“x=-3”是“复数z=(x2+2x-3)+(x-1)i为纯数”的(  )

查看答案和解析>>

同步练习册答案